BAB IV PEMBAHASAN

4.1 Spesifikasi Jenis Kendaraan Analisa Gaya Rem

Penulis akan mengambil 15 sampel kendaraan dengan merk yang berbeda. Dengan beberapa persamaan spesifikasi seperti tahun pembuatan dan persamaan daya mesin.

Disetiap 1 kendaraan akan dilakukan analisis data uji selama 5 tahun atau 10 kali proses pengujian efisiensi gaya rem. Dalam satu periode pengujian dilakukan adalah 6 bulan sekali atau satu semester untuk satu kali proses pengujian. Jadi setiap 1 data kendaraan akan menghasilkan 10 kali periode pengujian efisiensi rem dengan jangka waktu 5 tahun atau 10 semester. Berikut ini masing-masing data spesifikasi kendaraan setiap merk:

Tabel 4.1 Data Spesifikasi Kendaraan

Nomor	Seri Kendaraan	Merk	Kapasitas Mesin	No. Mesin	Tahun Pembuatan	Berat Kendaraan
1	L 8531 BE	Toyota	4.000 cc	W04DTRJ21929	2010	3400 Kg
2	L 9665 AI	Hino	4.000 cc	W04DTRJ15545	2010	2240 Kg
3	L 9480 GB	Toyota	4.000 cc	W04DTRJ16387	2010	3540 Kg
4	L 9175 UR	Toyota	4.000 cc	W04DTRJ11082	2010	3180 Kg
5	L 9713 UV	Hino	4.000 cc	W04DTRJ13298	2010	3430 Kg
6	L 8109 AZ	Toyota	4.000 cc	W04DTRJ11758	2010	3080 Kg
7	L 9725 VB	Hino	4.000 cc	W04DTRJ12277	2010	3430 Kg
8	L 8611 WC	Hino	4.000 cc	W04DTRJ17574	2010	3350 Kg
9	L 9552 UG	Hino	4.000 cc	W04DTRJ10456	2010	3440 Kg
10	L 9170 UC	Hino	4.000 cc	W04DTRJ13966	2010	2380 Kg
11	L 9674 VC	Hino	4.000 cc	W04DTRJ24066	2010	3340 Kg
12	L 8412 DE	Toyota	4.000 cc	W04DTRJ21846	2010	3400 Kg
13	L 9553 UG	Hino	4.000 cc	W04DTRJ10455	2010	3400 Kg
14	L 9479 GB	Toyota	4.000 cc	W04DTRJ16347	2010	3540 Kg
15	L 8117 ED	Toyota	4.000 cc	W04DTRJ15952	2010	2460 Kg

4.2 Hasil Uji Gaya Pengereman

Data berikut ini adalah hasil pengujian gaya pengereman dalam satuan kilogram (Kg) setiap kendaraan dari setiap periode (satu semester).

Tabel 4.2 Hasil Uji Gaya Pengereman Periode 1-5

No.	Seri	Periode 1		Periode 2		Periode 3		Periode 4		Periode 5	
NU.	Kendaraan	F Sumbu 1(kg)	F Sumbu 2(kg)	F Sumbu 1 (kg)	F Sumbu 2 (kg)	F Sumbu 1 (kg)	F Sumbu 2 (kg)	F Sumbu 1 (kg)	F Sumbu 2 (kg)	F Sumbu 1 (kg)	F Sumbu 2 (kg)
1	L 8531 BE	946	924	998	974	912	890	946	924	929	890
2	L 9665 AI	713	488	673	469	726	497	726	506	726	506
3	L 9480 GB	738	874	997	1003	979	968	1032	986	979	950
4	L 9175 UR	875	842	859	827	891	858	521	621	972	920
5	L 9713 UV	874	928	874	910	991	1015	941	945	890	962
6	L 8109 AZ	874	851	842	821	811	806	858	836	811	790
7	L 9725 VB	907	928	874	910	874	910	890	980	924	910
8	L 8611 WC	913	912	848	894	848	912	864	912	929	980
9	L 9552 UG	941	950	890	950	874	915	1310	1373	907	915
10	L 9170 UC	686	562	739	572	739	583	858	721	713	562
11	L 9674 VC	907	880	907	896	907	896	924	913	941	930
12	L 8412 DE	912	874	963	941	929	890	946	924	612	607
13	L 9553 UG	907	894	890	894	907	912	1075	1066	907	912
14	L 9479 GB	938	1074	961	950	979	968	961	950	1043	950
15	L 8117 ED	739	638	739	638	792	673	713	616	700	593

Periode 7 Periode 8 Seri Periode 6 Periode 9 Periode 10 No. |Kendaraan | FSumbu 1 (kg) | FSumbu 2 (kg) | FSumbu 1 (kg) | FSumbu 2 (kg) | F 1 L 8531 BE 2 L 9665 AI 3 L 9480 GB 4 L 9175 UR 5 L 9713 UV 6 L 8109 AZ 7 L 9725 VB 8 L 8611 WC 9 L 9552 UG 10 L 9170 UC 11 L 9674 VC 12 L 8412 DE 13 L 9553 UG 14 L 9479 GB 15 L 8117 ED

Tabel 4.3 Hasil Uji Gaya Pengereman Periode 6-10

4.3 Perhitungan Efisiensi Gaya Rem

Perhitungan efisiensi gaya rem yang dihasilkan dari pengujian gaya rem kendaraan dengan menggunakan alat uji merk Muller menggunakan rumus sebagai berikut :

$$\eta F total rem = \frac{F rem sumbu 1 + F rem sumbu 2}{berat kendaraan} x 100 \%$$

Perhitungan jika tidak memakai rumus formula Microsoft Excel

Kendaraan L 8531 BE periode 1

Diketahui: F rem sumbu 1 = 946 Kg

Ditanya: Berapa nilai efisiensi gaya rem kendaraan? Jawab:

$$\eta F total rem = \frac{F rem sumbu 1 + F rem sumbu 2}{berat kendaraan} x 100 \%$$

$$= \frac{946 Kg + 927 Kg}{3.400 Kg} x 100 \%$$

$$= 55 \%$$

Berikut hasil yang didapatkan dari perhitungan menggunakan rumus formula Microsoft Excel dari rumus η *F total rem* dari data tabel 4.2 dan 4.3

Tabel 4.4 Efisiensi Gaya Rem Periode 1-5

No.	Seri	ηΡ	eriode 1	η Ρε	eriode 2	ηΡο	eriode 3	ηΡο	eriode 4	η Ρε	eriode 5
INU.	Kendaraan	(%)	Keterangan	(%)	Keterangan	(%)	Keterangan	(%)	Keterangan	(%)	Keterangan
1	L 8531 BE	55.0	lulus	58.0	lulus	53.0	lulus	55.0	lulus	53.5	lulus
2	L 9665 AI	53.6	lulus	51.0	lulus	54.6	lulus	55.0	lulus	55.0	lulus
3	L 9480 GB	45.5	tidak lulus	56.5	lulus	55.0	lulus	57.0	lulus	54.5	lulus
4	L 9175 UR	54.0	lulus	53.0	lulus	55.0	lulus	35.9	tidak lulus	59.5	lulus
5	L 9713 UV	52.5	lulus	52.0	lulus	58.5	lulus	55.0	lulus	54.0	lulus
6	L 8109 AZ	56.0	lulus	54.0	lulus	52.5	lulus	55.0	lulus	52.0	lulus
7	L 9725 VB	53.5	lulus	52.0	lulus	52.0	lulus	54.5	lulus	53.5	lulus
8	L 8611 WC	54.5	lulus	52.0	lulus	52.5	lulus	53.0	lulus	57.0	lulus
9	L 9552 UG	55.0	lulus	53.5	lulus	52.0	lulus	78.0	lulus	53.0	lulus
10	L 9170 UC	52.4	lulus	55.1	lulus	55.5	lulus	66.3	lulus	53.6	lulus
11	L 9674 VC	53.5	lulus	54.0	lulus	54.0	lulus	55.0	lulus	56.0	lulus
12	L 8412 DE	52.5	lulus	56.0	lulus	53.5	lulus	55.0	lulus	35.9	tidak lulus
13	L 9553 UG	53.0	lulus	52.5	lulus	53.5	lulus	63.0	lulus	53.5	lulus
14	L 9479 GB	56.8	lulus	54.0	lulus	55.0	lulus	54.0	lulus	56.3	lulus
15	L 8117 ED	56.0	lulus	56.0	lulus	59.6	lulus	54.0	lulus	52.6	lulus

Tabel 4.5 Efisiensi Gaya Rem Periode 6-10

No.	Seri	ηΡ	eriode 6	η Ρο	eriode 7	ηΡο	eriode 8	ηΡ	eriode 9	ηPe	riode 10
NO.	Kendaraan	(%)	Keterangan								
1	L 8531 BE	54.5	lulus	54.0	lulus	55.0	lulus	57.5	lulus	56.0	lulus
2	L 9665 AI	67.4	lulus	57.2	lulus	55.6	lulus	55.7	lulus	57.0	lulus
3	L 9480 GB	57.0	lulus	58.0	lulus	26.6	tidak lulus	52.0	lulus	27.0	tidak lulus
4	L 9175 UR	69.5	lulus	37.5	tidak lulus	64.6	lulus	62.5	lulus	58.4	lulus
5	L 9713 UV	57.5	lulus	56.0	lulus	52.0	lulus	55.5	lulus	56.5	lulus
6	L 8109 AZ	53.5	lulus	54.5	lulus	54.5	lulus	55.5	lulus	58.0	lulus
7	L 9725 VB	55.0	lulus	53.5	lulus	58.5	lulus	56.5	lulus	61.0	lulus
8	L 8611 WC	53.0	lulus	70.3	lulus	46.5	tidak lulus	48.0	tidak lulus	64.0	lulus
9	L 9552 UG	38.1	tidak lulus	38.6	tidak lulus	57.5	lulus	69.5	lulus	58.1	lulus
10	L 9170 UC	54.0	lulus	57.6	lulus	60.2	lulus	55.5	lulus	39.2	tidak lulus
11	L 9674 VC	57.0	lulus	58.5	lulus	57.5	lulus	55.0	lulus	57.0	lulus
12	L 8412 DE	55.5	lulus	59.0	lulus	57.0	lulus	36.9	tidak lulus	36.1	tidak lulus
13	L 9553 UG	35.3	tidak lulus	55.5	lulus	56.5	lulus	37.4	tidak lulus	26.4	tidak lulus
14	L 9479 GB	54.5	lulus	55.0	lulus	58.5	lulus	56.0	lulus	54.0	lulus
15	L 8117 ED	56.5	lulus	55.0	lulus	55.0	lulus	55.5	lulus	55.1	lulus

Untuk keterangan *Lulus* dan *Tidak Lulus* berdasarkan aturan Peraturan Pemerintah Nomor 55 Tahun 2012 Tentang Kendaraan. Selanjutnya untuk kendaraan yang selama 5 tahun ini terdapat pengujian efisiensi rem yang *Tidak Lulus* uji akan dilihat daya angkut muatan dan nilai Jumlah berat yang diperbolehkan berdasarkan rancangan pabrikasi. Berikut data daya angkut muatan dan Jumlah berat total kendaraan yang diperbolehkan berdasarkan rancangannya:

Tabel 4.6 Daya Angkut Muatan

No	Seri	Jumlah Berat Yang Diperbolehkan	Daya Angkut
NO	Kendaraan	Berdasarkan Pabrikasi (JBB)	Muatan
1	L 8531 BE	8.300 Kg	4.720 Kg
2	L 9665 AI	5.200 Kg	2.190 Kg
3	L 9480 GB	8.300 Kg	4.580 Kg
4	L 9175 UR	8.300 Kg	4.720 Kg
5	L 9713 UV	7.500 Kg	3.810 Kg
6	L 8109 AZ	7.100 Kg	3.830 Kg
7	L 9725 VB	7.500 Kg	3.810 Kg
8	L 8611 WC	7.500 Kg	3.970 Kg
9	L 9552 UG	8.300 Kg	4.680 Kg
10	L 9170 UC	5.200 Kg	2.100 Kg
11	L 9674 VC	7.500 Kg	3.980 Kg
12	L 8412 DE	8.300 Kg	4.720 Kg
13	L 9553 UG	8.300 Kg	4.720 Kg
14	L 9479 GB	8.300 Kg	4.580 Kg
15	L 8117 ED	5.200 Kg	1.910 Kg

4.4 Analisa data

Untuk tabel 4.6 yang berwarna merah merupakan kendaraan yang pernah Tidak Lulus uji efisiensi rem selama 5 tahun diantaranya adalah:

 L 9480 GB dengan JBB 8.300 Kg dan daya angkut muatan 4.580 Kg

- L 9175 UR dengan JBB 8.300 Kg dan daya angkut muatan 4.720 Kg
- L 8611 WC dengan JBB 7.500 Kg dan daya angkut muatan 3.970 Kg
- L 9552 UG dengan JBB 8.300 Kg dan daya angkut muatan 4.680 Kg
- L 9170 UC dengan JBB 5.200 Kg dan daya angkut muatan 2.100 Kg
- L 8412 DE dengan JBB 8.300 Kg dan daya angkut muatan 4.720 Kg
- L 9553 UG dengan JBB 8.300 Kg dan daya angkut muatan 4.720 Kg

Dari 15 sampel kendaraan dengan 10 kali proses pengujian selama 5 tahun di peroleh 7 sampel kendaraan yang mengalami tidak lulus uji efisiensi rem dan di antara 7 kendaraan yang tidak lulus uji rem kebanyakan mempunyai JBB diatas 8.000 Kg dan daya angkut muatan diatas 4.000 Kg. Dari hasil data perhitungan diatas penulis akan meneliti lebih lanjut 5 kendaraan yang mempunyai JBB 8.300 dan daya angkut diatas 4.000 Kg yang mengalami Tidak Lulus uji efisiensi rem selama 5 tahun.

5 kendaraan ini adalah:

- L 9480 GB dengan JBB 8.300 Kg dan daya angkut muatan 4.580 Kg
- L 9175 UR dengan JBB 8.300 Kg dan daya angkut muatan 4.720 Kg
- L 9552 UG dengan JBB 8.300 Kg dan daya angkut muatan 4.680 Kg
- L 8412 DE dengan JBB 8.300 Kg dan daya angkut muatan 4.720 Kg
- L 9553 UG dengan JBB 8.300 Kg dan daya angkut muatan 4.720 Kg

kelima kendaraan ini akan dilihat daya mesin, dan akan diperhitungkan lagi daya angkut muatanya

- 4.4.1 Analisa kemampuan daya mesin kendaraan
 - L 9480 GB dengan JBB 8.300 Kg
 Mempunyai 130 Ps x 0.74 = 96,2 Kw

Menganalisa beban yang dimuat berdasarkan aturan regulasi pemerintah tertera dalam Peraturan Pemerintah Republik Indonesia Nomor 55 Tahun 2012 Tentang Kendaraan bahwa setiap paling sedikit 4,5 Kw harus mampu menarik kendaraan dengan berat 1000 Kg

Berarti 8.300 Kg/1.000 Kg = 8,3

96,2/8,3 = 11,5 artinya kendaraan ini dengan daya mesin 11,5 Kw mampu menarik beban kendaraan dengan berat 1.000 Kg

➤ L 9175 UR, dengan JBB 8.300 Kg

Mempunyai 110 Ps x 0.74 = 81.4 Kw

Menganalisa beban yang dimuat berdasarkan aturan regulasi pemerintah tertera dalam Peraturan Pemerintah Republik Indonesia Nomor 55 Tahun 2012 Tentang Kendaraan bahwa setiap paling sedikit 4,5 Kw harus mampu menarik kendaraan dengan berat 1000 Kg

Berarti 8.300 Kg/1.000 Kg = 8,3

81,4/8,3 = 9,8 artinya kendaraan ini dengan daya mesin 9,8 Kw mampu menarik beban kendaraan dengan berat 1.000 Kg

➤ L 9552 UG, dengan JBB 8.300 Kg

Mempunyai 96 Kw

Menganalisa beban yang dimuat berdasarkan aturan regulasi pemerintah tertera dalam Peraturan Pemerintah Republik Indonesia Nomor 55 Tahun 2012 Tentang Kendaraan bahwa setiap paling sedikit 4,5 Kw harus mampu menarik kendaraan dengan berat 1000 Kg

Berarti 8.300 Kg/1.000 Kg = 8,3

96/8,3 = 11,5 artinya kendaraan ini dengan daya 11,5 Kw mampu menarik beban kendaraan dengan berat 1.000 Kg

➤ L 8412 DE, dengan JBB 8.300 Kg

Mempunyai 130 Ps x 0.74 = 96.2 Kw

Menganalisa beban yang dimuat berdasarkan aturan regulasi pemerintah tertera dalam Peraturan Pemerintah Republik Indonesia Nomor 55 Tahun 2012 Tentang Kendaraan bahwa setiap paling sedikit 4,5 Kw harus mampu menarik kendaraan dengan berat 1000 Kg

Berarti 8.300 Kg/1.000 Kg = 8,3

96,2/8,3 = 11,5 artinya kendaraan ini dengan daya 11,5 Kw mampu menarik beban kendaraan dengan berat $1.000~{
m Kg}$

➤ L 9553 UG, dengan JBB 8.300 Kg

Mempunyai 96 Kw

Menganalisa beban yang dimuat berdasarkan aturan regulasi pemerintah tertera dalam Peraturan Pemerintah Republik Indonesia Nomor 55 Tahun 2012 Tentang Kendaraan bahwa setiap paling sedikit 4,5 Kw harus mampu menarik kendaraan dengan berat 1000 Kg

Berarti 8.300 Kg/1.000 Kg = 8,3

- 96/8,3 = 11,5 artinya kendaraan ini dengan daya 11,5 Kw mampu menarik beban kendaraan dengan berat 1.000 Kg
- ➤ Jadi 5 kendaraan ini telah memenuhi aturan pemeritah tentang besarnya daya mesin yang mampu menarik kendaraan berikut muatannya yaitu minimal 4,5 Kw

4.4.2 Analisa daya angkut muatan maksimal

Kelima kendaraan yang akan di analisa daya angkut muatan maksimalnya mempunyai JBB yang sama yaitu 8.300 dan jumlah kursi orang didalam kabin kendaraan 3 kursi serta berat manusia di asumsikan 60 Kg.

untuk perhitungannya adalah:

➤ L 9480 GB dengan berat kendaraan 3.540 Kg Jumlah orang yang muat 3 x 60 Kg = 180 Kg

➤ L 9175 UR dengan berat kendaraan 3.180 Kg Jumlah orang yang muat 3 x 60 Kg = 180 Kg

➤ L 9552 UG dengan berat kendaraan 3.440 Kg Jumlah orang yang muat 3 x 60 Kg = 180 Kg

➤ L 8412 DE dengan berat kendaraan 3.400 Kg Jumlah orang yang muat 3 x 60 Kg = 180 Kg

➤ L 9553 UG dengan berat kendaraan 3.400 Kg Jumlah orang yang muat 3 x 60 Kg = 180 Kg

4.5 Perhitungan Mencari Muatan Sumbu Terberat

Perhitungan untuk mencari Muatan Sumbu Terberat (MST) kendaraan niaga menggunakan asas hukum newton 3 dimana setiap ada gaya yang bekerjaa pada suatu benda di titik tersebut pasti ada gaya yang menahan/melawan gaya tersebut pada titik yang sama dengan arah yang berlawanan. Berikut rumus yang digunakan:

$$R_1 = S_1 + G + L \cdot \frac{(a-q)}{a}$$

$$R_2 = S_2 + L \cdot \frac{q}{a}$$

Dimana,

S1: berat sumbu roda depan

S2: berat sumbu roda belakang

R1 : reaksi sumbu roda depan

R2: reaksi sumbu roda belakang

q : jarak titik tengah muatan dengan sumbu roda depan

a : jarak antara roda depan dengan roda belakang

L : berat muatan barang (tanpa orang)

G: berat penumpang dan pengemudi

Tabel 4.7 Ukuran Dimensi Kendaraan

Seri Kendaraan	Lebar	Panjang	Tinggi
L 9480 GB	2000 mm	5646 mm	2350 mm
L 9175 UR	2000 mm	6046 mm	2550 mm
L 9552 UG	2100 mm	6046 mm	2350 mm
L 8412 DE	2000 mm	6046 mm	2550 mm
L 9553 UG	2100 mm	6046 mm	2350 mm

Perhitungan:

1. L 9480 GB

DA (daya angkut muatan) = 4.580 Kg

 $S_1 = 1780 \text{ Kg}$

 $S_2 = 1760 \text{ Kg}$

 $G = 3 \times 60 \text{ Kg} = 180 \text{ Kg}$

$$L = DA - G = 4.580 \text{ Kg} - 180 \text{ Kg} = 4400 \text{ Kg}$$

a = 3380 mm (didapat dari lampiran data spesifikasi kendaraan)

>
$$R_1 = S_1 + G + L \frac{(a-q)}{a}$$

= 1780 Kg + 180 Kg + 4400 Kg
\(\frac{(3380 \text{ mm} - 2800 \text{ mm})}{3380 \text{ mm}}\)
= 2715 Kg
> $R_2 = S_2 + L \frac{q}{a}$
= 1760 + 4400 \(\frac{2800}{3380}\)
= 5404 Kg

Jadi muatan sumbu terberat ada pada roda belakang karena nilai R₂ lebih besar dari R₁ Serta kelas jalan yang boleh dilalui adalah kelas jalan III sesuai dengan aturan pemerintah Undang-Undang Republik Indonesia Nomor 22 Tahun 2009 tentang Lalu Lintas dan Angkutan Jalan

2. L 9175 UR

DA (daya angkut muatan) = 4720 Kg
$$S_1 = 1780 \text{ Kg}$$

$$S_2 = 1760 \text{ Kg}$$

$$G = 3 \times 60 \text{ Kg} = 180 \text{ Kg}$$

$$L = DA - G = 4.580 \text{ Kg} - 180 \text{ Kg} = 4400 \text{ Kg}$$

a = 3380 mm (didapat dari lampiran data spesifikasi kendaraan)

>
$$R_1 = S_1 + G + L \frac{(a-q)}{a}$$

= 1780 Kg + 180 Kg + 4400 Kg
\(\frac{(3380 \text{ mm} - 2800 \text{ mm})}{3380 \text{ mm}}\)
= 2715 Kg
> $R_2 = S_2 + L \frac{q}{a}$
= 1760 + 4400 \(\frac{2800}{3380}\)
= 5404 Kg

Jadi muatan sumbu terberat ada pada

belakang karena nilai R_2 lebih besar dari R_1 Serta kelas jalan yang boleh dilalui adalah kelas jalan III sesuai dengan aturan pemerintah Undang-Undang Republik Indonesia Nomor 22

Tahun 2009 tentang Lalu Lintas dan Angkutan Jalan

3. L 9552 UG

DA (daya angkut muatan) =
$$4680 \text{ Kg}$$

S₁ = 1680 Kg

$$S_2 = 1760 \text{ Kg}$$

$$G = 3 \times 60 \text{ Kg} = 180 \text{ Kg}$$

$$L = DA - G = 4680 \text{ Kg} - 180 \text{ Kg} = 4500 \text{ Kg}$$

a = 3380 mm (didapat dari lampiran data spesifikasi kendaraan)

>
$$R_1 = S_1 + G + L \frac{(a-q)}{a}$$

= 1680 Kg + 180 Kg + 4500 Kg
\(\frac{(3380 \text{ mm} - 2800 \text{ mm})}{3380 \text{ mm}}\)
= 2632 Kg
> $R_2 = S_2 + L \frac{q}{a}$
= 1760 + 4540 \frac{2800}{3380}
= 5520 Kg

Jadi muatan sumbu terberat ada pada roda belakang karena nilai R₂ lebih besar dari R₁

Serta kelas jalan yang boleh dilalui adalah kelas jalan III sesuai dengan aturan pemerintah Undang-Undang Republik Indonesia Nomor 22 Tahun 2009 tentang Lalu Lintas dan Angkutan Jalan

 L 8412 DE dengan JBB 8.300 Kg dan daya angkut muatan 4.720 Kg

$$S_1 = 1720 \text{ Kg}$$

$$S_2 = 1680 \text{ Kg}$$

$$G = 3 \times 60 \text{ Kg} = 180 \text{ Kg}$$

$$L = DA - G = 4720 \text{ Kg} - 180 \text{ Kg} = 4540 \text{ Kg}$$

a = 3380 mm (didapat dari lampiran data spesifikasi kendaraan)

>
$$R_1 = S_1 + G + L \frac{(a-q)}{a}$$

= 1720 Kg + 180 Kg + 4540 Kg
\(\frac{(3380 mm - 2800 mm)}{3380 mm}\)
= 2679 Kg
> $R_2 = S_2 + L \frac{q}{a}$
= 1680 + 4540 \(\frac{2800}{3380}\)
= 5440 Kg

Jadi muatan sumbu terberat ada pada roda belakang karena nilai R₂ lebih besar dari R₁ Serta kelas jalan yang boleh dilalui adalah kelas jalan III sesuai dengan aturan pemerintah Undang-Undang Republik Indonesia Nomor 22 Tahun 2009 tentang Lalu Lintas dan Angkutan Jalan

5. L 9553 UG

DA (daya angkut muatan) =
$$4720 \text{ Kg}$$

$$S_1 = 1680 \text{ Kg}$$

$$S_2 = 1720 \text{ Kg}$$

$$G = 3 \times 60 \text{ Kg} = 180 \text{ Kg}$$

$$L = DA - G = 4720 \text{ Kg} - 180 \text{ Kg} = 4540 \text{ Kg}$$

q = 2800 mm (didapat dari lampiran data spesifikasi kendaraan)

a = 3380 mm (didapat dari lampiran data spesifikasi kendaraan)

$$R_{1} = S_{1} + G + L \frac{(a-q)}{a}$$

$$= 1680 \text{ Kg} + 180 \text{ Kg} + 4540 \text{ Kg}$$

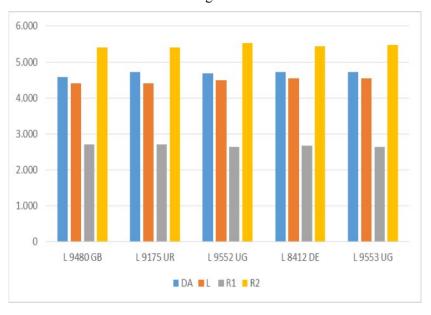
$$\frac{(3380 \text{ mm} - 2800 \text{ mm})}{3380 \text{ mm}}$$

$$= 2639 \text{ Kg}$$

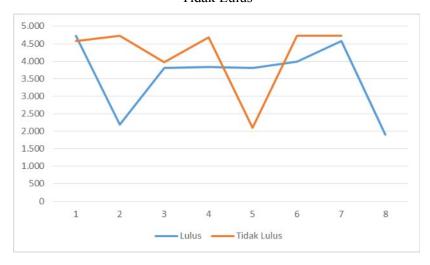
$$R_{2} = S_{2} + L \frac{q}{a}$$

$$= 1720 + 4540 \frac{2800}{3380}$$

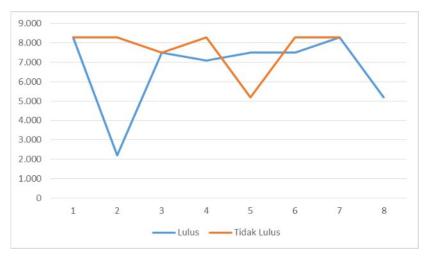
$$= 5480 \text{ Kg}$$


Jadi muatan sumbu terberat ada pada roda belakang karena nilai R_2 lebih besar dari R_1 Serta kelas jalan yang boleh dilalui adalah kelas jalan III sesuai dengan aturan pemerintah Undang-Undang Republik Indonesia Nomor 22

Tahun 2009 tentang Lalu Lintas dan Angkutan Jalan


Tabel 4.8 Hasil Perhitungan Kendaraan Tidak Lulus

	Nomor	DA	L	R1	R2
No.	Polisi	(Kg)	(Kg)	(Kg)	(Kg)
1	L 9480 GB	4.580	4.400	2.715	5.404
2	L 9175 UR	4.720	4.400	2.715	5.404
3	L 9552 UG	4.680	4.500	2.632	5.520
4	L 8412 DE	4.720	4.540	2.679	5.440
5	L 9553 UG	4.720	4.540	2.639	5.480


Grafik 4.1 Hasil Perhitungan Kendaraan Tidak Lulus

Grafik 4.2 Perbandingan Angka Daya Angkut antara Lulus dan Tidak Lulus

Grafik 4.3 Perbandingan Angka Jumlah Berat Yang Diperbolehkan antara Lulus dan Tidak Lulus

4.6 Spesifikasi Jenis Kendaraan Analisa Ketebalan Gas Buang Kendaraan

Penulis akan mengambil 15 sampel kendaraan dengan merk yang berbeda dengan persamaan tahun pembuatan.

Disetiap 1 kendaraan akan dilakukan analisis data uji selama 10 tahun atau 20 kali proses pengujian emisi gas buang kendaraan. Dalam satu periode pengujian dilakukan adalah 6 bulan sekali atau satu semester untuk satu kali proses pengujian. Akan tetapi data yang di ambil adalah data semester kedua di setiap tahun atau data setiap tahun. Jadi setiap 1 data kendaraan akan menghasilkan 10 data pengujian emisi gas buang kendaraan dengan jangka waktu 10 tahun. Berikut ini masing-masing data spesifikasi kendaraan setiap merk

Tabel 4.9 Data Spesifikasi Kendaraan uji Emisi

No.	Seri	Merk	Kapasitas	No. Mesin	Tahun
NO.	Kendaraan	MEIK	Mesin	No. Mesin	Pembuatan
1	L 8098 WD	Toyota	4.000 cc	W04DJJ33256	2005
2	L 8001 Q	Toyota	4.000 cc	W04DJJ36307	2005
3	L 8022 LM	Toyota	4.000 cc	W04DJJ28273	2005
4	L 8865 UY	Toyota	4.000 cc	W04DJJ28832	2005
5	L 8111 PN	Toyota	4.000 cc	W04DJJ29514	2005
6	L 8790 UZ	Toyota	4.000 cc	W04DJJ34159	2005
7	L 8113 EH	Isuzu	4.000 cc	W04DJJ31598	2005
8	L 8110 PH	Hino	4.000 cc	W04DJJ28818	2005
9	L 8621 VE	Toyota	4.000 cc	W04DJJ29333	2005
10	L 8346 LR	Toyota	4.000 cc	W04DJJ31939	2005
11	L 8701 UB	Toyota	4.000 cc	W04DJJ33103	2005
12	L 9098 UH	Hino	4.000 cc	W04DJJ28094	2005
13	L 8108 YF	Toyota	4.000 cc	W04DJJ32816	2005
14	L 8186 D	Hino	4.000 cc	W04DJJ26214	2005
15	L 8148 VC	Toyota	4.000 cc	W04DJJ36147	2005

4.7 Hasil Uji Emisi Gas Buang

Data berikut ini adalah hasil pengujian emisi gas buang kendaraan bermotor dalam satuan persen (%) pada setiap tahun.

Seri Ketebalan Emisi Gas Buang (%) No. Kendaraan Tahun ke-1 | Tahun ke-2 | Tahun ke-3 | Tahun ke-4 | Tahun ke-5 | Tahun ke-6 | Tahun ke-7 | Tahun ke-8 | Tahun ke-9 | Tahun ke-10 L 8098 WD L 8001 Q L 8022 LM L 8865 UY L 8111 PN L 8790 UZ L 8113 EH L 8110 PH 9 L 8621 VE 10 L 8346 LR 11 L 8701 UB 12 L 9098 UH 13 L 8108 YF 14 L 8186 D 15 L 8148 VC

Tabel 4.10 Hasil Uji Emisi Gas Buang

Untuk tabel 4.9 yang berwarna merah merupakan kendaraan yang pernah Tidak Lulus uji emisi gas buang selama10 tahun.

4.8 Perhitungan Indeks Performa Kendaraan

Perhitungan indeks performa kendaraan ini hanya akan mengacu pada hasil uji emisi gas buang kendaraan niaga yang ada di kantor UPTD Pengujian Kendaraan Bermotor Tandes, Kota Surabaya. Dan perhitungan ini mecocokan hasil uji kelulusan dengan berdasarkan regulasi aturan pemeritnah yaitu Peraturan Menteri

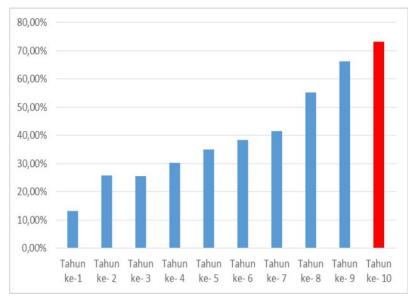
Negara Lingkungan Hidup Nomor 5 Tahun 2006 tentang Ambang Batas Emisi Gas Buang Kendaraan Bermotor Lama.

Langkah 1 menghitung jumlah total emisi ke 15 sampel kendaraan pertahun kemudian dibagi dengan jumlah sampel

Tahun ke 1 =
$$\frac{12+14+15+14+12+13+14+14+12+12+14+13+12+14+13}{15}$$

= $\frac{198}{15}$ = 13,2%
Tahun ke 2 = $\frac{25+25+24+28+26+25+27+24+24+23+25+25+24+25+24}{15}$
= $\frac{374}{15}$ = 25,9%
Tahun ke 3 = $\frac{26+24+25+26+24+26+27+25+26+28+25+24+27+25+24}{15}$
= $\frac{382}{15}$ = 25,5%
Tahun ke 4 = $\frac{28+28+30+32+27+33+28+28+34+28+27+34+35+34+27}{15}$
= $\frac{453}{15}$ = 30,2%
Tahun ke 5 = $\frac{33+34+35+34+34+42+36+35+40+31+32+34+35+35+36}{15}$
= $\frac{526}{15}$ = 35,1%
Tahun ke 6 = $\frac{38+34+40+38+37+38+37+37+38+37+41+38+44+43+36}{15}$
= $\frac{576}{15}$ = 38,4%
Tahun ke 7 = $\frac{40+36+41+42+40+40+38+47+42+37+42+43+46+48+41}{15}$
= $\frac{623}{15}$ = 41,5%

Tahun ke
$$8 = \frac{55+57+64+56+61+60+59+58+61+62+54+46+45+48+44}{15}$$


$$= \frac{830}{15} = 55,3\%$$
Tahun ke $9 = \frac{61+65+71+65+68+69+72+71+65+78+62+61+63+71+52}{15}$

$$= \frac{994}{15} = 66,3\%$$
Tahun ke $10 = \frac{69+72+82+70+69+68+72+74+70+70+68+72+84+90+68}{15}$

$$= \frac{1098}{15} = 73,2\%$$

Tabel 4.11 Hasil Rata-rata Ketebalan Asap Setiap Tahun

Tahun	Ketebalan Asap
Tahun ke-1	13,20%
Tahun ke- 2	25,90%
Tahun ke- 3	25,50%
Tahun ke- 4	30,20%
Tahun ke- 5	35,10%
Tahun ke- 6	38,40%
Tahun ke- 7	41,50%
Tahun ke- 8	55,30%
Tahun ke- 9	66,30%
Tahun ke- 10	73,20%

Grafik 4.4 Hasil Rata-rata Ketebalan Asap Setiap Tahun

Selanjutnya sesuai dengan aturan regulasi pemerintah bahwa untuk kendaraan tahun pembuatan < 2010 ketebalan asap gas buang kendaraan mesin diesel maksimal adalah 70%, jadi pada

Tahun ke 1 dinyatakan LULUS uji emisi gas buang Tahun ke 2 dinyatakan LULUS uji emisi gas buang Tahun ke 3 dinyatakan LULUS uji emisi gas buang Tahun ke 4 dinyatakan LULUS uji emisi gas buang Tahun ke 5 dinyatakan LULUS uji emisi gas buang Tahun ke 6 dinyatakan LULUS uji emisi gas buang Tahun ke 7 dinyatakan LULUS uji emisi gas buang Tahun ke 8 dinyatakan LULUS uji emisi gas buang Tahun ke 9 dinyatakan LULUS uji emisi gas buang

Tahun ke10 dinyatakan TIDAK LULUS uji emisi gas buang, karena nilai persetanse ketebalan asap rata-rata pada tahun ke 10 diatas 70% yaitu senilai 73,2%

Untuk mencari indeks performa kendaraan yang dihasilkan berdasarkan penelitian terhadap gas buang kendaraan niaga mesin diesel maka menngunakan perhitungan sebagai berikut:

Jika nilai ketebalan asap 1% maka indeks performa mesin kendaraan adalah 100% atau kondisi prima, dan Jika nilai ketebalan asap mencapai 100% maka indeks performa mesin kendaraan adalah 0% atau sangat buruk. Jika menggunakan 5 skala penilaian dari ketebalan 70% maka terlebih dahulu 70/5 = 17,5, maka setiap kenaikan penilaian skala adalah 17,5%, lebih jelas lihat tabel

Tabel 4 12 Skala Indeks Performa

Hasil Ketebalan Asap	Persepsi Performa	Skala
(%)		
> 70	Sangat Kurang	1
52,6-70	Kurang	2
23,5-52,5	Cukup Baik	3
17,6-35	Baik	4
≤17,5	Prima	5

Jika skala 5 adalah kondisi performa prima artinya kondisi performa kendaraan 100% dan skala 1 adalah kondisi performa sangat kurang artinya performa kendaraan 0% maka :

Mencari persentase kondisi performa kendaraan selama 10 tahun jika 5 = 100%, DAN 1 = 0%

Hasil gas buang kendaraan tahun ke 10 adalah 73% atau angka variabel 73/100 = 0.73

Persentase performa kendaraan
$$\frac{5}{100\%} = \frac{0,73}{x}$$
$$5X = 73\%$$
$$X = \frac{73\%}{5}$$
$$X = 14,6 \%$$

Jadi performa kondisi rata-rata kendaraan pada tahun ke 10 hanya sekitar 14,6%

4.9 Aktualisasi Kendaraan Tidak Lulus Uji

Untuk kendaraan yang tidak lulus uji efisiensi rem dan ketebalan asap gas buang pada hari kendaraan tersebut di uji dan dinyatakan tidak lulus, kantor UPTD PKB Tandes Surabaya mengeluarkan berita acara pemeriksaan terhadap pemilik kendaraan. Selanjutnya pemilik dihimbau agar melakukan penggantian/perbaikan terhadap komponen yang dinyatakan tidak lulus uji atau tidak laik jalan dan melakukan uji ulang paling lambat 7 hari setelah dinyatakan tidak lulus uji. Bilamana setelah waktu 7

hari tidak melakukan proses pengujian ulang di kantor UPTD PKB Tandes, maka kendaraan tetap dinyatakan tidak laik jalan jika beroperasi dijalan. Dan jika lebih dari batas waktu yang ditentukan ingin melakukan proses uji ulang kembali maka dinyatakan sebagai pemohon baru dan dikenai retribusi lagi. Berita acara pemeriksaan untuk kendaraan yang tidak lulus uji bisa lihat di bagian lampiran.

Halaman ini sengaja dikosongkan