EFFECT OF EXTRACT GINGER (Zingiber officinale L) ON HYPERGLYCEMIC RAT LIVER GLYCOGEN LEVELS

by Nenny Triastuti F. Kedokteran Dosen

Submission date: 04-Dec-2018 04:46PM (UTC+0700)

Submission ID: 1050311296

File name: KARYA_ILMIAH_NENNY.pdf (970.89K)

Word count: 3341

Character count: 19986

August 29, 2016 [THESIS]

Page 1

EFFECT OF EXTRACT GINGER (Zingiber officinale L) ON HYPERGLYCEMIC RAT LIVER GLYCOGEN LEVELS

Nenny Triastutii, Achmad Basoriz, Sunarni Zakarias

1Post Graduate Study of Pharmacology Major, Faculty of Medicine Airlangga University, Surabaya, Indonesia / Department of Pharmacology, Faculty of Medicine, Muhammadiyah University, Surabaya, Indonesia 2Department of Pharmacology & Therapeutic, Faculty of Medicine, Airlangga University, Surabaya, Indonesia 3 Faculty of Medicine, Airlangga University, Surabaya, Indonesia

ABSTRACT 7

Backgrounds: This study aims to prove the effect of ginger extract on rat liver glycogen levels in perglycemic

Methods: The design of this study is the post-test only control group design with independent variables (free) include a high-fat diet, injections of streptozotocin, the ethanol extract of ginger doses of 300, 400, 500 mg / kg and the dependent variable (dependent) include blood glucose levels (GTTO II), glycogen levels

Results: Based on this study, the results of different test GTTO end shows significant differences between negative control group and a positive control, a positive control and P1. Besides, also, there is a significant difference between P1 to P2. This suggests that, dosing higher ginger extract can increase the amount of glycogen levels to near normal

Conclusion: Effect of ginger extract on levels of glycogen in the liver of mice were exposed to a high-fat diet and STZ

Keywords: High Fat Diet, STZ, Ginger Extract, liver glycogen levels

LATAR BELAKANG

Jahe (Zingiber Officinale L) adalah tanaman yang mempunyai peran penting dalam kesehatan karena memiliki aktivitas sebagai antidiabetes, antibakterial, antiobesitas, antitumor, gastroprotective effect dan hepato-protective activity (Rahmani et al., 2014). Adeniyi dan Adegoke (2014) melaporkan bahwa 6-gingerol yang terdapat pada jahe memiliki efek antidiabetik. Efek antidiabetik jahe diketahui dari penurunan kadar glukosa darah puasa tikus yang diberikan streptozotocin. Selain dari kadar glukosa darah, efek antidiabetik jahe dapat diketahui dari pemeriksaan kadar glikogen hepar. Kadar glikogen hepar pada pasien Diabetes Melitus mengalami penurunan karena aktivitas enzim glikogen sintase yang rendah (June et al., 2012). Pemberian jahe dapat meningkatkan sekresi insulin, sehingga dapat menghambat glukoneogenesis dan glikogenolisis. Dengan demikian jahe dapat menurunkan kadar glukosa darah pasien Diabetes Melitus. Obat-obat hipoglikemik yang ada memiliki efek samping jangka panjang sehingga dibutuhkan obat hipoglikemik baru dengan efek samping yang minimal (Jafri et al., 2010). Jahe merupakan salah satu tanaman yang mempunyai potensi antidiabetik sehingga dapat dijadikan sebagai terapi alternatif pada Diabetes melitus.

Diabetes melitus (DM) merupakan gangguan metabolisme dengan angka kejadian yang semakin tinggi dan memiliki komplikasi yang serius (Depkes RI, 2015). Jumlah penderita DM di dunia pada tahun 1980 sebesar 108 juta jiwa dan pada tahun 2014 meningkat menjadi 422 juta jiwa. Prevalensi DM banyak ditemukan pada negara berkembang dan dapat menimbulkan komplikasi berupa kebutaan, gagal ginjal, serangan jantung dan stroke. Profil negara Indonesia tahun 2015 berdasarkan data WHO menunjukkan bahwa angka kejadian DM sebesar 6%, dan belum mengalami penurunan sejak tahun 2000 (WHO, 2015). Salah satu tipe Diabetes yang banyak ditemui di dunia adalah DM tipe 2. Tipe ini terjadi karena obesitas dan pola hidup dengan aktifitas fisik yang kurang. DM tipe 2 memberikan tanda penyakit yang lebih sedikit bila dibandingkan dengan DM tipe 1 sehingga diagnosis DM tipe 2 dapat ditegakkan beberapa tahun setelah awal penyakit dan sudah timbul komplikasi.

Berbagai penelitian telah dilakukan membuktikan pengaruh jahe terhadap Diabetes Melitus. Jafri et al. (2010) melaporkan bahwa pemberian ekstrak jahe pada tikus yang di injeksi aloxan dapat menurunkan level glukosa darah. Pemberian ekstrak jahe dengan dosis 500mg/kgBB peroral selama 60 hari pada tikus yang diinduksi streptozotocin mampu memberikan hipoglikemik (Abdullah, 2012). Pemberian ekstrak jahe dengan dosis 400 mg/kgBB peroral selama 4 minggu dapat meningkatkan kadar insulin serum pada tikus yang diinduksi dengan streptozotocin dan diet tinggi lemak (Adeniyi dan Adegoke, 2014). Efek hipoglikemik suatu tanaman dapat dinilai dengan melakukan pengukuran glikogen hepar. Hal ini dibuktikan oleh penelitian June et al. 2012 tentang efek hipoglikemik tanaman sambung nyawa yang dapat meningkatkan aktivitas enzim glikogen sintase kinase dan kadar glikogen hepar. Glikogen adalah polimer molekul glukosa yang berperan sebagai cadangan energi. Pasien yang menderita Diabetes Melitus mengalami gangguan pada aktivitas enzim glikogen sintase. Enzim glikogen sintase pada pasien DM mengalami penurunan sehingga kadar glikogen menurun. Kadar glikogen mempunyai peran dalam pemantauan pemberian terapi pada DM. Efek hipoglikemik jahe terhadap kadar glikogen hepar belum dapat dijelaskan.

Penelitian ini dilakukan untuk menganalisis efek pemberian ekstrak jahe terhadap kadar glikogen hepar. Penelitian ini menggunakan tikus wistar jantan sebagai model Diabetes Melitus. Induksi Diabetes Melitus tipe 2 dilakukan dengan cara pemberian diet tinggi lemak selama 63 hari yang dikombinasikan dengan pemberian streptozotocin pada hari ke 29 dengan dosis 27,5 mg/kgBB secara intraperitoneal. Ekstrak jahe diberikan dalam 3 dosis

yaitu 300 mg/kgBB/hari, 400 mg/kgBB/hari, dan 500 mg/kgBB/hari selama 28 hari dan akan dibandingkan dengan kelompok kontrol positif (tikus yang di induksi Diabetes Melitus) dan kelompok kontrol negatif (tikus normal). Pengambilan darah tikus dilakukan pada akhir penelitian untuk pemeriksaan glukosa darah. Tikus dikorbankan dan dilakukan pengambilan hepar

untuk pemeriksaan kadar glikogen dengan menggunakan metode PAS (Periodic Acid Schiff).

August 29, 2016 [THESIS] Page 2

MATERIAL DAN METODE

Penelitian yang dilakukan adalah penelitian eksperimental laboratorium dengan rancangan penelitian the post test only control group design.

Dilakukan randomisasi dan dibagi menjadi 5 kelompok : (1) kelompok kontrol negatif, (2) kelompok positif, (3) kelompok perlakuan I, (4) kelompok perlakuan II dan (5) kelompok perlakuan III. Kelompok kontrol negatif diberi diet standar, sedangkan kelompok lainnya diberi diet tinggi lemak hingga hari ke-63 (9 minggu).

Pada hari ke-29, kelompok kontrol negatif diberi perlakuan sisipan suntikan plasebo secara intraperitoneal, sedangkan kelompok lainnya diberi perlakuan sisipan suntikan streptozotocin dengan dosis 27,5 mg/kgBB dalam pelarut dapar sitrat secara intraperitoneal. Cara induksi hewan coba menjadi model diabetes melitus tipe 2 adalah mengacu pada penelitian yang dilakukan oleh Rimbun (2015). Hasil penelitian tersebut terbukti cara signifikan menaikkan kadar glukosa darah dan menurunkan sinyal insulin di sel otot tikus (Rimbun, 2015). Pasca pemberian suntikan streptozotocin, untuk menghindari efek samping dan resiko terjadinya sudden hypoglycemic maka diberikan larutan sukrosa atau dekstrosa 10% sepanjang malam (Purwanto & Liben, 2014).

Pada hari ke-36 dilakukan tes pembebanan glukosa 2 mg/grBB pada semua kelompok setelah dipuasakan 8 jam sebelumnya, kemudian dilakukan pemeriksaan kadar glukosa darah 1 jam setelah pembebanan glukosa (GTTO I) pada semua kelompok. Pada hari ke-36 ini diharapkan semua hewan coba pada kelompok perlakuan (P1 – P3) telah berhasil diinduksi hiperglikemia, oleh karena itu pada kelompok kontrol negatif (KN) apabila ditemukan hewan coba dengan kadar glukosa darah (GTTO I) \geq 140 mg/dl dan pada kelompok perlakuan (P1 – P3) apabila ditemukan hewan coba dengan kadar glukosa darah (GTTO I) \leq 140 mg/dl maka dilakukan eksklusi. Pemberian ekstrak etanol jahe diberikan pada kelompok P1, P2 dan P3 pada hari ke-36 sampai dengan hari ke-63 (selama 28 hari) dengan dosis masing – masing 300 mg/kgBB, 400 mg/kgBB, dan 500 mg/kgBB. Pada hari ke-64 dilakukan kembali tes pembebanan glukosa 2 mg/grBB pada semua kelompok setelah dipuasakan 8 jam sebelumnya sebelumnya, kemudian dilakukan pemeriksaan kadar glukosa darah 1 jam setelah pembebanan glukosa (GTTO II) pada semua kelompok.

Setelah dilakukan pemeriksaan GTTO II, semua hewan coba dikorbankan dengan cara dilakukan anestesi dengan menggunakan ketamine HCl dengan dosis 44 – 60 mg/kgBB secara intramuskular, setelah teranestesi kemudian dilakukan insisi di dinding abdomen untuk mengambil organ hepar. Sisa tubuh hewan coba dimusnahkan dengan cara dibakar, segera setelah pengorbanan dan pengambilan organ hepar untuk kepentingan pemeriksaan kadar glikogen

August 29, 2016 [THESIS]

Page 3

Data kadar glukosa darah GTTO I dan II, dan glikogen yang terkumpul dilakukan coding, editing, transfer / entry, cleaning data, selanjutnya data dikelompokkan berdasarkan variabel penelitian dan disajikan dalam bentuk tabel distribusi frekuensi, tabel silang dan atau grafik.

August 29, 2016 [THESIS]

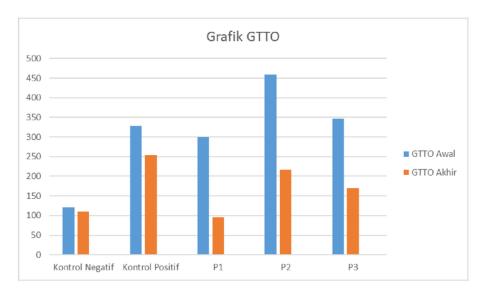
Page 4

Sebelum dilakukan uji beda, data kadar glukosa darah, glikogen diuji normalitas terlebih dahulu dengan Saphiro-Wilk dan diuji homogenitas dengan uji Varians Levene's (nilai kemaknaan p > 0,05). Apabila data berdistribusi normal dan memiliki varians yang homogen, uji beda antar kelompok sampel untuk masing – masing variabel dengan menggunakan uji varians satu arah (one way ANOVA). Tingkat kesalahan yaitu sebesar 5% (nilai kemaknaan p < 0,05). Jika terdapat perbedaan yang bermakna, maka untuk mengetahui beda antar kelompok sampel (analisis post hoc) digunakan uji LSD (Least Significant Difference) atau Uji Beda Nyata Terkecil. Apabila data berdistribusi tidak normal dan tidak homogen atau data berdistribusi tidak normal tetapi homogen atau data berdistribusi normal tetapi tidak homogen, maka uji beda dilakukan dengan menggunakan Kruskal-Wallis. Jika terdapat perbedaan yang bermakna, maka untuk mengetahui beda antar kelompok sampel (analisis post hoc) digunakan uji Mann – Whitney

August 29, 2016 [THESIS]

Page 5


Berat badan di ukur pada awal penelitian dan akhir penelitian. Sedangkan GTTO adalah kadar glukosa darah tikus 1 jam setelah pembebanan gluoksa per oral dengan dosis 2 mg per gram BB tikus pada hari ke 64. Sebelum pembebanan glukosa, tikus dipuasakan selama 8 jam dengan nilai rerata sebagai berikut:


Nilai Rerata

Kelompok	BB Awal (gram)	BB Akhir (gram)	GTTO Awal (mg/dL)	GTTO Akhir (mg/dL)
Kontrol Negatif	174,83	202	121,17	110
Kontrol Positif	162,33	184	327,5	253,67
P1	176,17	172,83	299,67	95,67
P2	167,5	180,67	459,5	217,17
P3	181,67	196,17	346,33	170,33

August 29, 2016 [THESIS]

Page 6

Uji normalitas dilakukan dengan uji Saphiro-Wilk (α =0,05). Hasil uji normalitas GTTO akhir (Tabel 5.1), p = 0,001 sehingga tidak memenuhi uji normalitas data, maka untuk melihat perbedaan rata-rata dari kadar GTTO akhir pada masing-masing kelompok tersebut dilakukan dengan uji Kruskal Willis.

Tabel 5.1. Hasil uji normalitas Saphiro-Wilk GTTO akhir

Variabel	n	р	
GTTO akhir	30	0,001	

Tabel 5.2. Hasil uii homogenitas GTTO akhir.

Variabel	n	р	
GTTO akhir	30	0,001	-

Tabel 5.3. Hasil uii komparasi Kruskal-Wallis GTTO akhir.

Variabel	n	р	
GTTO akhir (5 kelompok)	30	0,001	

Hasil uji *Kruskal Wallis* pada GTTO akhir, terdapat perbedaan yang bermakna, sehingga dilanjutkan dengan uji *Post Hoc* yaitu uji *Mann-Whitney* (p = 0,001).

Hasil uji *Mann-Whitney* untuk variabel GTTO akhir (Tabel 5.4) menunjukkan bahwa terdapat perbedaan bermakna antara kelompok kontrol negatif dan kontrol positif (p = 0.002), kelompok kontrol positif dan P1 (p = 0.04), kelompok P1 dan P2 (p = 0.04)

Tabel 5.4. Hasil uii Mann-Whitney GTTO akhir.

Kelompok	terhadap	p	
KN	KP	0,002*	
KP	P1	0,04*	_
P1	P2	0,04*	

^{*}Terdapat perbedaan bermakna antar kelompok (p<0,05).

PEMBAHASAN

Jahe (Zingiber Officinale) adalah tanaman yang mempunyai peran penting dalam kesehatan karena memiliki aktivitas sebagai antidiabetes, antibakterial, antiobesitas, antitumor, gastro-protective effect dan hepato-protective activity (Rahmani et al., 2014. Pemberian jahe dapat meningkatkan sekresi insulin, sehingga dapat menghambat glukoneogenesis dan glikogenolisis. Dengan demikian jahe dapat menurunkan kadar glukosa darah pasien Diabetes Mellitus. Jahe merupakan salah satu tanaman yang mempunyai potensi antidiabetik sehingga dapat dijadikan sebagai terapi alternatif pada Diabetes Mellitus. Diberikan pada hari ke 36 – 63 (selama 28 hari) pada kelompok P1,P2 dan P3 dengan dosis masing-masing 300mg/kgBB, 400mg/kgBB dan 500mg/kgBB.

Pada penelitian ini metode ekstraksi yang digunakan adalah metode maserasi karena proses maserasi sangat menguntungkan dalam isolasi senyawa bahan alam dan mudah dilakukan dengan peralatan sederhana. Metode maserasi juga dapat mengurangi kemungkinan terdegradasinya senyawa yang diinginkan akibat proses ekstraksi karena termasuk dalam metode ekstraksi dingin yang tidak menggunakan panas. Maserasi dilakukan dengan cara merendam simplisia selama beberapa waktu dalam suatu wadah dengan menggunakan pelarut.

Hasil penelitian Wijaya et al., (2001), menunjukkan bahwa metode maserasi adalah metode ekstraksi terbaik dengan skor rata-rata 3,71 dari skala 5 dibandingkan tiga metode ekstraksi yang lain yaitu metode headspace, destilasi vakum dan Licken Nickerson. Pengaruh suhu tinggi yang memungkinkan senyawa-senyawa metabolit sekunder terdegradasi dapat dihindari dengan menggunakan metode maserasi, karena metode ini tidak menggunakan suhu panas. Kekurangan dari metode masersi yaitu memerlukan waktu yang lama untuk menentukan pelarut organik yang tepat, dengan titik didih tinggi agar tidak mudah menguap serta dapat melarutkan senyawa yang akan diisolasi dengan baik (Hidayah, 2013).

Pada proses pembuatan ekstrak sediaan obat herbal dibutuhkan suatu pelarut yang tepat agar senyawa yang diinginkan dari bahan ekstrak dapat terambil dengan baik. Pelarut-pelarut tersebut ada yang bersifat polar dan non polar. Metode maserasi umumnya menggunakan pelarut non air atau pelarut non-polar. Pelarut yang digunakan untuk pembuatan ekstrak etanol jahe adalah etanol 95%.

Berdasarkan hasil penelitian dari Retnaningtyas (2010), penggunaan pelarut etanol 95% untuk ekstraksi dapat menghasilkan total rendemen yang lebih banyak, jumlah sisa pelarut yang lebih sedikit, nilai efisiensi yang lebih besar, membutuhkan waktu pemisahan yang lebih singkat (5 jam) dibandingkan dengan yang dihasilkan oleh aquades. Pelarut yang digunakan dalam proses ekstraksi sebaiknya adalah pelarut yang tidak toksik dan ramah lingkungan. Efek toksik suatu pelarut tersebut dilihat dari kemampuan *Lethal Concentration* 50 (LC₅₀). Selain lebih efisien dan ekonomis, pelarut etanol 95% memiliki LC₅₀ yang lebih baik. Hasil penelitian Dewi (2011), nilai LC₅₀ ekstrak etanol 96% lebih rendah yaitu sebesar 89,9762 μg/mL dibandingkan dengan ekstrak etanol 80% yaitu sebesar 120,6776 μg/mL. **Kadar Glikogen** Pemeriksaan jumlah kadar glikogen dalam hepar tikus dimaksudkan untuk mengetahui efek pemberian ekstrak jahepada tikus yang dipaparkan diet tinggi lemak dan STZ. Berbagai penelitian telah dilakukan untuk membuktikan pengaruh jahe terhadap Diabetes Mellitus. Jafri *et al.* (2010) melaporkan bahwa pemberian ekstrak jahe pada tikus yang di injeksi aloxan

dapat menurunkan level glukosa darah. Pemberian ekstrak jahe dengan dosis 500mg/kgBB peroral selama 60 hari pada tikus yang diinduksi streptozotocin mampu memberikan efek hipoglikemik (Abdullah, 2012). Pemberian ekstrak jahe ginger dengan dosis 400 mg/kgBB peroral selama 4 minggu dapat meningkatkan kadar insulin serum pada tikus yang diinduksi dengan streptozotocin dan diet tinggi lemak (Adeniyi dan Adegoke, 2014). Efek hipoglikemik suatu tanaman dapat dinilai dengan melakukan pengukuran glikogen hepar. Hal ini dibuktikan oleh penelitian June et al. 2012 tentang efek hipoglikemik tanaman sambung nyawa yang dapat meningkatkan aktivitas enzim glikogen sintase kinase dan kadar glikogen hepar. Glikogen adalah polimer molekul glukosa yang berperan sebagai cadangan energi. Pasien yang menderita Diabetes Mellitus mengalami gangguan pada aktivitas enzim glikogen sintase. Enzim glikogen sintase pada pasien DM mengalami penurunan sehingga kadar glikogen menurun. Kadar glikogen mempunyai peran dalam pemantauan pemberian terapi pada DM.

Berdasarkan hasil penelitian ini, hasil uji beda GTTO akhir menunjukkan perbedaan bermakna antara kelompok kontrol negatif dan kontrol positif, kontrol positif dan Pl. Disamping itu juga, terdapat perbedaan yang bermakna antara Pl dengan P2. Hal ini menunjukkan bahwa, pemberian dosis ekstrak jahe yang lebih tinggi dapat meningkatkan jumlah kadar glikogen sehingga mendekati normal.

Penelitian Al Amin et al (2006) dalam Ali et al (2008) mempelajari potensi hipoglikemik jahe pada tikus yang telah diinduksi diabetes, dengan memberikan jahe segar sebanyak 500 mg/kg setiap hari selama 7 minggu. Hasil penelitian menunjukkan bahwa doot tersebut signifikan efektif menurunkan level serum glukosa, kolesterol dan triasilgliserol. Singh et al (2009) meneliti pengaruh pemberian jahe sebagai antiglikemik, menurunkan lemak darah dan sebagai agen antioksidan untuk diabetes tipe 2 (Hernani & Winarti, 2010). Pada suatu studi memberikan jahe dengan dosis 100, 200 dan 400 mg/kgBB selama 6 minggu pada tikus yang diinduksi diet tinggi lemak. Hasil penelitian tersebut menunjukkan bahwa pada kelompok yang mendapat perlakuan jahe terdapat penurunan kadar glukosa darah yang signifikan dibandingkan dengan kelompok kontrol (Nammi, Sreemantula, & Roufogalis, 2009).

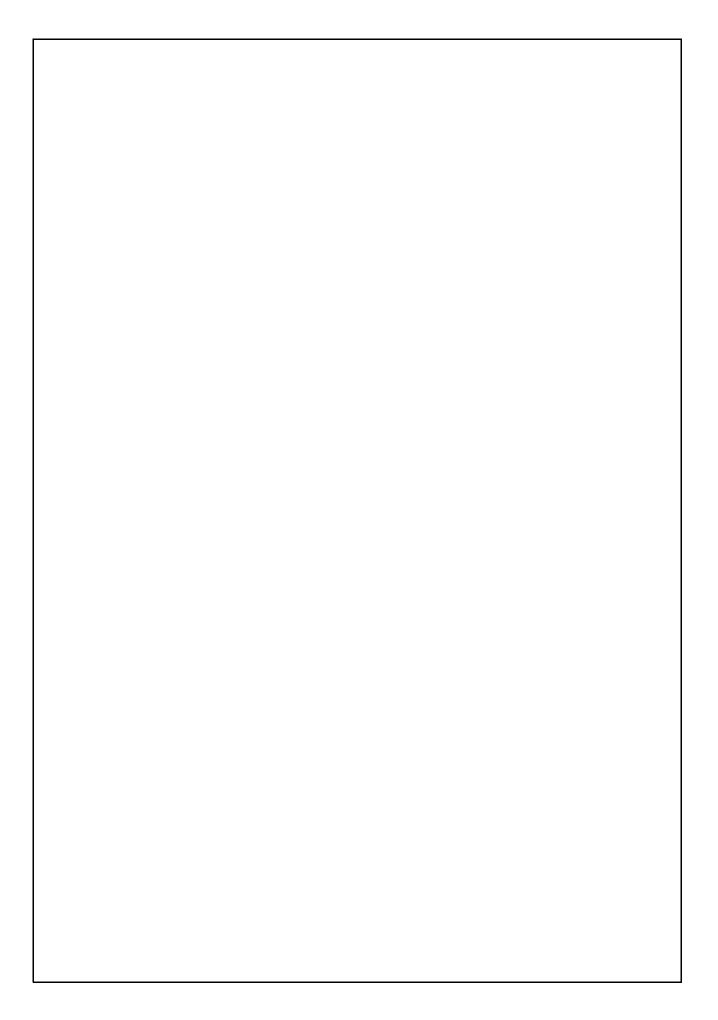
Beberapa studi in vitro menunjukkan bahwa ekstrak jahe dan [8]-gingerol dapat meningkatkan pengambilan glukosa dan translokasi GLUT4 pada L6 myotube (Yagasaki, 2014). [6]-gingerol juga terbukti meningkatkan *threonine172 phosphorylated* AMPKα di dalam L6 myotube. [6]-gingerol juga meningkatkan konsentrasi ion Ca²⁺ selama 1 menit di intraselular yang tergantung pada kenaikan dosis jahe di L6 myotubes, di mana Ca²⁺ akan merangsang Ca²⁺/*calmodulin-dependent protein kinase kinase* (CAMKK), yang pada akhirnya membantu regulasi AMPK. Mekanisme lainnya dari jahe juga terbukti meningkatkan adiponektin oleh 6-shogaol dan 6-gingerol. Aktivitas PPAR-γ juga dapat ditingkatkan oleh 6-shogaol, tetapi tidak oleh 6-gingerol. Hal tersebut menunjukkan bahwa jahe berperan terhadap peningkatan pengambilan glukosa dan perbaikan sensitivitas insulin di jaringan perifer (Roufogalis, 2014).

Pada penelitian secara in vitro, akar jahe dan komponen yang terkandung di dalamnya, gingerols dan shogaols, dapat menghambat sintesis beberapa sitokin pro-inflammatory termasuk IL-1, TNF-α dan IL-8 yang berhubungan dengan penghambatan enzim pada sintesis prostaglandin dan leukotrien. Suatu hipotesis yang menyebutkan bahwa jahe mempunyai manfaat pada penderita diabetes dengan inflamasi kronis de 3 at ringan. Hiperglikemia yang kronis meningkatkan kadar biomarker inflamasi pada sirkulasi seperti IL-6 (IL6), tumor necrosis factor-α (TNF-α) dan C-reactive protein (CRP). TNF-α dan IL-6, merupakan sitokin utama yang menginisiasi respon inflamasi dan menyebabkan produksi CRP sebagai penanda fase akut. Banyak kejadian yang menunjukkan bahwa inflamasi derajat ringan, yang merupakan ciri khas diabetes melitus tipe 2, berperan penting dalam patogenesis pada komplikasi sekunder seperti atherothrombosis (Mahluji et al, 2013).

August 29, 2016 [THESIS]

Page 7

SIMPULAN DAN SARAN


Simpulan dari penelitian ini adalah: ada pengaruh pemberian ekstrak jahe terhadap kadar glikogen di hepar tikus yang dipaparkan diet tinggi lemak dan STZ

Saran dari penelitian ini adalah perlu pemeriksaan enzim glikogen sintase pada penelitian lebih lanjut

REFERENSI

- 1. ADA, 2016. Standards of Medical Care in Diabetes 2016. American Diabetes Association, 39(2016), 1–112. htt. //doi.org/10.2337/dc14-S014
- Abdulrazaq N.B., Cho M.M., Win N.N., Zaman R. and Rahman M.T. (2012). Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. British Journal of Nutrition; 108 (7): 1194-1201.
- 3. Adeniyi P.O. and Sanusi R.A. (2014). Effect of ginger (*Zingiber officinale*) extracts on blood glucose in normal and ste 3 ozotocin-induced diabetic rats. International Journal of Clinical Nutrition; 2 (2): 32-35.
- 4. Akhani SP, Vishwakarma SL & Goyal RK (2004) Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. J Pharm Pharmacol 56, 101–105.
- 5, Al-Amin Z.M., Thomson M., Al-Qattan K.K., Peltonen-Shalaby R., and Ali M. (2006). Anti diabetic and hypoglycemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats. British Journal of N 3 tion; 96: 660-666.
- Asha B, Krishnamurthy KH & Devaru S (2011) Evaluation of anti hyperglycaemic activity of Zingiber officinale (Ginger) in albino rats. J Chem Pharm Res 3, 452–456.
- 7. Badreldin HA, Gerald B, Musbah OT, et al. (2008) Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale L): a review of recent research. Food Chem Toxicol 46, 409–420.
- 8. Cheng D. Prevalence, Predisposition and Prevention of Type II Diabetes. Nutrition & Metabolism; 2005; 2:29. Diakses tanggal 1 Maret 2012.

- 9. Jafri S.A., Abass S. and Qasim M. (2011). Hypoglycemic effect of Ginger (Zingiber officinale) in alloxan-induced diabetic rats (Rattus norvagicus). Pakistan Veterinary Journal; 31 (2): 160-162.
- 10. Kahn BB, Flier JS. *Obesity and Insulin Resistance. The Journal of Clinical Investigation*; 2000; Volume 106; Number 4. Diakses tanggal 1 Maret 2012.
- 11. Meigs JB. Association of Oxidative Stress, Insulin Resistance, and Diabetes Risk Phenotypes. Diabetes Care; 2007; Volume 30, Number 10. Diakses tanggal 1 Maret 2012.
- 12. Pessin JE, Saltiel AR. Signaling Pathways in Insulin Action: Molecular Targets of Insulin Resistance. The Journal of Clinical Investigation; 2010; Volume 106, Number 2. Diakses tanggal 1 Maret 2012
- 13. Shaw JE, Sicree RA, Zimmet PZ. Global Estimates of The Prevalence of Diabetes for 2010 and 2030. Diabetes Research And Clinical Practice; 2010; 87, pp.4-14. Diakses tanggal 1 Maret 2012.
- 14. Shulman Gl. *Cellular Mechanisms of Insulin Resistance*. *The Journal of Clinical Investigation*; 2000; Volume 106, Number 2. Diakses tanggal 1 Maret 2012.
- 15. Son M.J., Miura Y and Kazum Y. (2014). Mechanism of anti diabetic effect of gingerol in cultured cultured cells and obese diabetic model mice. Cytotechnology.
- 16. Sukalingam K., Ganesan K. and Gani S.B. (2013). Hypoglycemic effect of 6-gingerol, an active principle of ginger in streptozotocin-induced diabetic rats. Journal of Pharmacology and Toxicological Studies; 1 (2): 23-30.
- 17. Wilcox, Gisela. *Insulin and Insulin Resistance*. 2005. Clin Biochem Rev. 2005 May; 26(2): 19–39. Diakses tanggal 1 Apr 52012.
- 18. Wu C., Khan S.A., Peng L.J. and Lange A.J. (2006). Roles for fructose-2,6-bisphosphate in the control of fuel met olism beyond its allosteric effects on glycolytic and gluconeogenic enzymes. Adv. Enzyme Regul.; 46 (1): 72-88. 19. Young H.V., Luo Y.L., Chang H.Y., HaiehW.C. Liao J.C. and Peng W.C. (2005). Analgesic and anti-inflammatory activities of 6-gingerol. J. Ethnopharmacol.; 96: 207-210.

EFFECT OF EXTRACT GINGER (Zingiber officinale L) ON HYPERGLYCEMIC RAT LIVER GLYCOGEN LEVELS

ORIGIN	NALITY REPORT				
9 SIMILA	% ARITY INDEX	% INTERNET SOURCES	5% PUBLICATIONS	6% STUDENT PA	APERS
PRIMA	RY SOURCES				
1	Submitte Student Pape	ed to Universitas	Brawijaya		2%
2	Submitte Student Pape	ed to iGroup			1%
3		nal Food and Hu Imerica, Inc, 201		Springer	1%
4		ed to Sydney Inst Medicine	titute of Tradit	ional	1%
5	Submitte Student Pape	ed to National Ur	niversity of Sin	igapore	1%
6	Method f Three Mo Roscoe)	"Rapid and Accion the Determinedicinal Gingers by High Performography", Analyt	ation of Ginge (Zingiber officenance Liquid	erols in cinale	1%

"Abstracts of the 26th Annual Conference of APASL, February 15–19, 2017, Shanghai, China", Hepatology International, 2017

Publication

1%

8

Naveen Kumar Madalageri, Lavanya Nagaraj, Suryanarayana Babushaw Nidamarthi.
"EVALUATION AND COMPARATIVE STUDY OF HYPOGLYCAEMIC ACTIVITY OF MORUS ALBA WITH ORAL HYPOGLYCAEMIC DRUG (GLIBENCLAMIDE) IN ALLOXAN INDUCED DIABETIC RATS", Journal of Evolution of Medical and Dental Sciences, 2016

1%

Publication

Exclude quotes

On

Exclude matches

< 20 words

Exclude bibliography

On