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Abstract The Bidikmisi scholarship program is an education assistance program
by the government of Indonesia which aims to achieve equitable access and
learning opportunities at University. Bidikmisi acceptance status having a binary
type (i.e. 0 and 1) produces a structure of Bernoulli mixture model with two
components. The characteristics of each component can be identified through the
Bernoulli mixture regression modeling by involving the covariates of Bidikmisi
scholarship grantees. The estimating parameter of Bernoulli mixture regression
model was performed using Bayesian-Markov Chain Monte Carlo (MCMC)
approach. One of the challenges in using Bayesian-MCMC algorithm is deter-
mining the convergence of the sampler to the posterior distribution which is typi-
cally assessed using diagnostics tools. In this paper, we present that the diagnostics
tools such as Geweke method, Gelman-Rubin method, Raftery-Lewis method and
Heidelberger-Welch method can give different results to conclude MCMC con-
vergence. The improvement of convergence indicators occurs on Gelman-Rubin
method and Heidelberger-Welch method when the number of iterations is
increased.
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1 Introduction

Bernoulli mixture model is developed based on mixture distribution which has an
adaptive capability to represent data pattern in data-driven analysis perspective [1].
Bidikmisi acceptance status that has a binary type can be formed as Bernoulli
mixture model with two components. The characteristics of each component can be
identified through the Bernoulli mixture regression model by involving the
covariates of Bidikmisi scholarship recipients.

The inference for Bernoulli mixture regression model with Bayesian-Markov
Chain Monte Carlo (MCMC) can overcome a particular challenge on computational
aspects. Nevertheless it encounters a weakness that relates with the convergence of
estimation process. Therefore the parameter estimation process of Bayesian
Bernoulli mixture regression model has to be assessed on it convergence
achievement.

2 Methodology

2.1 Bayesian Bernoulli Mixture Regression Model

Nadif and Govaert [2] introduced Bernoulli mixture model which was further
developed by Grun and Leisch [3] in the generalized linear model framework.
Suppose Y ¼ Y1; Y2; . . .; Ynð Þ is a random sample of a binary vector which has a
linear relationship with covariates X1;X2; . . .;Xp on each Yi such that

gi ¼ gðliÞ ¼ gðEðYijXÞÞ ¼ logitðliÞ ¼ log
li

1� li

� �
¼

Xp
j¼1

bjXij ð1Þ

where g is linear predictor, gð:Þ is the link function which is defined as logit
function for Bernoulli distribution, li is expected value of random variable Yi and b
is regression parameter. Therefore Bernoulli mixture regression model can be
defined as

f YjL; p;X; bð Þ ¼
XL
‘¼1

p‘p‘ YjX; b‘ð Þ ð2Þ

where L is the number of mixture components, p ¼ p1; . . .; pLð Þ is the mixture
proportion which has property

PL
‘¼1 p‘ ¼ 1 and p‘ YjX; b‘ð Þ�Beðlogit�1

‘ ðlÞÞ, i.e.,
p‘ YjX; b‘ð Þ has a Bernoulli distributed with parameter logit�1

‘ ðlÞ with

l ¼ ðl1; l2; . . .; lnÞ0, X0 ¼ ðX1;X2; . . .;XnÞ and b‘ ¼ ðb1; b2; . . .; bpÞ0. Let H ¼
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ðH1;H2; . . .;HdÞ
0 ¼ ðb1; . . .; bL; pÞ

0
denote all unknown parameters appearing in

the Bernoulli mixture regression model. The posterior probability distribution
f HjY; L;Xð Þ can be represented as f HjY; L;Xð Þ / f YjH; L;Xð Þp Hð Þ where pðHÞ
is the prior distribution of H and f YjH; L;Xð Þ is the mixture likelihood of Eq. (2).

2.2 Markov Chain Monte Carlo Convergence Diagnostics

As referred in [4], in Bayesian inference perspective, if Markov chain is convergent
imply that the chain reaches the true posterior distribution. Thus the convergence of
estimated parameters should be checked in order to get the true posterior inference
for parameters.

Based on Gelman and Rubin [5], if there are m Markov Chains which are
mutually independent and it has been taken a number of T iterations, t ¼ 1; 2;. . .; T ,
MCMC convergence can be monitored through estimation of potential scale
reduction factor (PSRF). If the PSRF value is close to 1, then every m Markov
Chains converge to the true posterior distribution.

As stated in [6], the diagnostic test of Geweke compute indicator Z that has
means of subsamples A, �HA, and means of subsamples B, �HB as the beginning and
the end of samples respectively. Considering rð �HB� �HAÞ is an estimated standard

deviation of difference �HB � �HA and Z asymptotically follows the standardized
normal distribution, Z�Nð0; 1Þ, so if Zj j[ 2 then the chain is not convergent.

Raftery and Lewis [7] defined Nmin as the minimum number of iterations that
would be needed to achieve the required estimation precision for some function of
parameter. If the value of dependence factors, I ¼ N=Nmin, is greater than 5, then it
implies convergence failure of Markov chain.

Heidelberger and Welch [8] proposed the method consists of two tests for
assessing convergence. Firstly, a stationary test which verifies whether the Markov
chain occurs from a stationary stochastic process. Secondly, the half-width test
which determines if there is sufficient sample size for a chain to estimate the mean
values of the process with appropriate accuracy. Markov chain has not convergent
when it fails to meet those two tests.

2.3 Data and Model

The Data in this research are Bidikmisi 2015 data of all districts in East Java
Province Indonesia which are composed of 33,603 Bidikmisi registrants from 35
regencies. Research variables used in this study consisted of the response variable
(Y) and the predictor variable (X) which is constructed by dummy variables as
follows
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Y: the acceptance status of Bidikmisi scholarship (1 = accepted, 0 = not accepted)
X1: father’s job is formed by dummy variables d11, d12, d13, and d14.

d11: farmer, fisherman or others job which relate with agriculture.
d12: civil servants, police, and army.
d13: entrepreneur.
d14: private employees

X2: mother’s Job is formed by dummy variables d21, d22, d23, and d24.

d21: farmer, fisher and others job which relate with agriculture.
d22: civil servants, police, and army.
d23: entrepreneur.
d24: private employees

X3: father’s education is formed by dummy variables d31, d32, and d33.

d31: not continue to school.
d32: elementary, junior high, or senior high school graduate level.
d33: higher education level

X4: mother’s education is formed by dummy variables d41, d42, and d43.

d41: not continue to school.
d42: elementary, junior high, or senior high school graduate level.
d43: higher education level

All of dummy variables defined above are valued by 1, and otherwise are 0.
The Bernoulli mixture regression model which has to be estimated is defined by

f yjp; x; bð Þ ¼ p1 Be
eg1 xð Þ

1þ eg1 xð Þ

� �
þ p2 Be

eg2 xð Þ

1þ eg2 xð Þ

� �
ð3Þ

with p1 and p2 are mixture proportions which have properties 0� p1 � 1,
0� p2 � 1 and p1 þ p2 ¼ 1. f yjp; x; bð Þ represents two mixture components namely
a component of wrong acceptance condition and a component of right acceptance
condition. While g1ðxÞ and g2ðxÞ are formed by

g1 xð Þ ¼ bð1Þ0 þ bð1Þ11d11 þ bð1Þ12d12 þ bð1Þ13d13 þ bð1Þ14d14 þ bð1Þ21d21 þ bð1Þ23d23 þ bð1Þ24d24 þ
bð1Þ31d31 þ bð1Þ32d32 þ bð1Þ33d33 þ bð1Þ41d41 þ bð1Þ42d42 þ bð1Þ43d43

and

g2 xð Þ ¼ bð2Þ0 þ bð2Þ11d11 þ bð2Þ12d12 þ bð2Þ13d13 þ bð2Þ14d14 þ bð2Þ21d21 þ bð2Þ23d23 þ bð2Þ24d24 þ
bð2Þ31d31 þ bð2Þ32d32 þ bð2Þ33d33 þ bð2Þ41d41 þ bð2Þ42d42 þ bð2Þ43d43:
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In that model, there are two parameters p‘; bð‘Þkj which have to be estimated. The
prior distributions which are implemented for the each of the parameters are
pðp‘Þ� dirichletð#Þ and pðbð‘ÞkjÞ�Nðl; rÞ. Coefficient of bð‘Þkj indicates the
number of units (as coded) of change in g1ðxÞ and g2ðxÞ between the category for
which dummy variable dkj = 0 and the category for which dummy variable dkj = 1.

3 Results

Computation of estimated parameters was performed on OpenBUGS [9]. Whereas
diagnostic processes of MCMC convergence were done through R software with
convergence diagnosis and output analysis (CODA) package [10]. In the first
process, we generated 10,000 iterations which produced p1 ¼ 0:604 and p2 ¼
0:396 as a significant estimated mixture proportions. CODA diagnostic for some
parameters which have convergent problems is described on Table 1.

Referring to Table 1, Gelman-Rubin method shows that MCMC is convergent
for all estimated parameter. The Geweke method indicates MCMC for the estimated
parameter b̂41 on g1ðxÞ is not convergent. Whereas Raftery-Lewis method gives
unconvergent MCMC on estimated parameters b̂0; b̂11 and b̂21 in g1ðxÞ and g2ðxÞ.
Based on Heidelberger-Welch method [8], MCMC for estimated parameter b̂24 is
failed to converge. It means that by discarding of 10% increment until 50% of the
iterations, the stationary tests are still failed. Therefore, when the simulation is run
10,000 iterations, there is only Gelman-Rubin which has a convergent indicator for
all parameters. If Markov chain does not converge to the posterior distribution of
parameters, then valid inferences of parameters on the Bernoulli mixture regression
model cannot be accomplished. Based on [9], we conducted further simulations,
i.e.,100,000 iterations in order to know the effect of increased number iterations on
MCMC convergence. The significant estimated mixture proportions are p1 ¼
0:6041 and p2 ¼ 0:3959. The result of CODA diagnostic is presented on Table 2.

In regard to Table 2, it can be seen that the Gelman-Rubin method and the
Heidelberger-Welch method present an improvement of indicator values. Those

Table 1 Indicator values of CODA diagnostics with 10,000 iterations

Param Sig. est. value Gelman-Rubin Geweke Raftery-Lewis Heidel-Welch

g1ðxÞ g2ðxÞ g1ðxÞ g2ðxÞ g1ðxÞ g2ðxÞ g1ðxÞ g2ðxÞ g1ðxÞ g2ðxÞ
b̂0 1.201 −1.79 1.01 1.03 0.223 −0.11 18.9 23.7 passed passed

b̂11 −1.288 0.87 1.00 1.01 0.306 0.15 9.03 12.8 passed passed

b̂21 −2 1.14 1.02 1.01 −0.77 0.115 20.7 20.3 passed passed

b̂24 −1.3 0.07 1.01 1.00 −0.69 −0.71 4.54 3.63 failed failed

b̂41 −0.257 −0.07 1.00 1.00 2.084 0.185 3.71 4.01 passed passed
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results can confirm significant outcome of estimated parameters. Four predictor
variables,i.e., father’s job, mother’s job, father’s education and mother’s education
significantly influence g1ðxÞ and g2ðxÞ which can affect on the parameter of
Bernoulli distribution according to the Eq. (3). Nevertheless, the Geweke method
shows inconsistent diagnostic results, whereas, the Raftery-Lewis method has not
significant change on convergent indicator results and still gets unconvergent
MCMC indicator values on b̂0; b̂11 and b̂21. These results affirm that application of
MCMC diagnostic tests to Bayesian Bernoulli mixture regression model can assure
classification of two acceptance conditions in Bidikmisi, i.e., wrong acceptance
condition and right acceptance condition.

4 Conclusion

The MCMC diagnostic methods give different results to conclude MCMC con-
vergence. On the Gelman-Rubin method and the Heidelberger-Welch method, the
increasing number of iterations improve convergence indicators for estimated
parameters of Bernoulli mixture regression model.
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