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Abstract: The model developed considers the uniqueness of a data-driven binary response (indicated
by 0 and 1) identified as having a Bernoulli distribution with finite mixture components. In social
science applications, Bernoulli’s constructs a hierarchical structure data. This study introduces
the Hierarchical Bernoulli mixture model (Hibermimo), a new analytical model that combines the
Bernoulli mixture with hierarchical structure data. The proposed approach uses a Hamiltonian Monte
Carlo algorithm with a No-U-Turn Sampler (HMC/NUTS). The study has performed a compatible
syntax program computation utilizing the HMC/NUTS to analyze the Bayesian Bernoulli mixture
aggregate regression model (BBMARM) and Hibermimo. In the model estimation, Hibermimo
yielded a result of ~90% compliance with the modeling of each district and a small Widely Applicable
Information Criteria (WAIC) value.

Keywords: Bernoulli mixture model; finite mixture; Hamiltonian Monte Carlo; WAIC

1. Introduction

The Bernoulli distribution is frequently used for data mining, particularly for text
analysis, and it has been improved into a mixture model called the Bernoulli Mixture Model
(BMM) [1]. The BMM evolves on the basis of the mixture distribution, representing data
patterns from a data-driven analysis perspective [2]. The expansion of BMM was discussed
by Grim et al. [3], González et al. [4], Juan and Vidal [5,6], Patrikainen and Manilla [7],
Bouguila [8], Zhu et al. [9], Sun et al. [10], Tikka et al. [11], Myllykangas et al. [12], and
Saeed et al. [13]. This research proposes a model by considering the uniqueness of binary
response data (0 and 1) identified as having a Bernoulli distribution with finite mixture
components that can be applied in the area of social science.

The uniqueness of the data-driven distribution of a Bernoulli mixture when applied to
social science concentrates on tracing the relationships between the units of observation and
the social environment. Social science concepts emphasize that units are correlated with
social communities. The units are affected by the characteristics of the social environment in
which they are located [14]. In general, social units and districts are united in a hierarchical
system to build a hierarchical data structure. The hierarchical data structure implies that the
unit-level has a nested structure or is clustered at the district level. The information at each
level in a hierarchical data structure must be statistically analyzed simultaneously [15,16].
The hierarchical model aims to measure the response variables explained by the explanatory
variables at each level of the hierarchical data structure [17]. Additionally, Ringdal [18],
by accounting for individual membership in the area/environment, aimed to make the
expected inference.

This study develops the Hierarchical Bernoulli mixture model (Hibermimo). This
model combines the concept of a hierarchical structure with the BMM, considering the
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uniqueness of data. In Hibermimo, the binary or dichotomous response variable must use
a link function in the estimation process. We fit the logit link function in a Level 1 model,
linking the linear predictor and the Bernoulli mixture distribution. One study using BMM
with this link function has been performed by Suryaningtyas et al. [19], which discussed
scholarship classifications using Bayesian MCMC.

Hibermimo analysis performs well in complex models. Parameter estimation for
Hibermimo using the classical (frequentist) approach is insufficient. Recently, there has
been strong interest in the Hamiltonian Monte Carlo algorithm with No-U-Turn Sampler
(HMC/NUTS) for implementing the proposed model. Here, we provide a simple syntax
for the computation of the model using the Stan program. Stan, a probabilistic program-
ming language for specifying statistical models, allows full Bayesian inference using the
HMC/NUTS strategy, an adaptive form of sampling [20]. This research aims to study the
theoretical and computational estimators of the Hibermimo two-level parameters with an
approach using the HMC/NUTS algorithm. Furthermore, we also empirically studied the
application of Hibermimo in social science in the case of Bidikmisi in East Java Province.
Analytical Hibermimo compares its effectiveness with the Bayesian Bernoulli mixture
aggregate regression model (BBMARM) using WAIC.

The rest of the study is structured as follows. Section 2 describes the Bernoulli Mixture
Model and the likelihood. We provide a directed acyclic graph (DAG) as a graphical
model to illustrate the relationships between the data used with parameters and prior
distributions at each hierarchy level. In addition, we present a prior assumption at the
micro-level and macro-level and the form of the joint posterior distribution. The parameter
estimation method of the Hierarchical Bernoulli Mixture Model using the Hamiltonian
Monte Carlo algorithm is given in Section 3. This section also applies models to the
unique binary responses of the Bidikmisi scholarship data (0 and 1), identified as having a
Bernoulli distribution with finite mixture components. Section 4 discusses the performance
of the best models, and Section 5 presents the conclusions and addresses future research
in Hibermimo.

2. Materials and Methods
2.1. Bernoulli Mixture Model

If a random sample Y derived from unit i at level j includes binary response data
(0 and 1), it could be identified as having a Bernoulli mixture distribution. The vector
y =

[
y1j y2j · · · ynm

]T , i = 1, 2, . . . , n, j = 1, 2, . . . , m can contain a finite number of
C mixed groups with the proportion π = (π1, π2, . . . , πC) with ∑C

c πc = 1. The density
functions for the finite mixture model (FMM) of Y were presented by McLachlan and
Peel [21]. The finite Bernoulli mixture model (FBMM) for the c number of components can
be rewritten as:

p
(

yij
∣∣ω) =

C
∑

c=1
πc pc

(
yij
∣∣θijc

)
=

C
∑

c=1
πc θijc

yij
(
1− θijc

)1−yij ,
(1)

whereω = (π,θ), π = (π1, π2, . . . , πC), and θ =
(
θij1, θij2, . . . , θijC

)
. θijc is the parameter

distribution of the Bernoulli mixture with the probability of success of the i-th unit at the
j-th level of the c-th mixture component. Identification of each data unit i to be classified
as a member of the mixture components in BMM as in (1) must use a latent variable, z.
The working scenario is that there is an indicator vector zi which can classify yij into c
different numbers of mixture components. This latent variable, therefore, would consist of
defined vector latent membership. The complete likelihood of BMM would be as shown in
Equation (2).

pC(y, z|ω) =
m

∏
j=1

n

∏
i=1

C

∏
c=1

[
πc θijc

yij
(
1− θijc

)1−yij
]zic

, (2)
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to estimate the model, we can then obtain the marginal density function of p(z|π) and
p(y|z,θ ) from the decomposition of the likelihood function in Equation (2).

2.2. Directed Acyclic Graph of Hibermimo

Directed acyclic graph (DAG) is a graphical model representing the relationships
between the data used and parameters, and the prior distributions at each hierarchical
level in the analysis using the Bayesian approach [22]. The Hierarchical Bernoulli mixture
model (Hibermimo) DAG using the Bayesian Hamiltonian Monte Carlo algorithm shows
the position of the hyperprior hierarchy level and the relationships among the prior
distributions for the micro- and macro-model parameters independently at each level.
The DAG of the two-level Hibermimo is presented in Figure 1.
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Figure 1. DAG of two level Hibermimo with two finite mixture components.

The notation yij in Figure 1 is defined as the binary response of the finite Bernoulli
mixture distribution (for every unit i of the observation data for district j) with two
components, i.e., Bernoulli Component 1

(
θij1
)

and Bernoulli Component 2
(
θij2
)
. The

indicator vector z classifies the data in the mixture according to the component criteria. The
proportion of π is set as Dirichlet distribution, and the hyper-parameters of the Dirichlet
prior are expressed as α. Each Bernoulli mixture component, θij1 and θij2, is supposed to be
influenced by Xkij at the micro-level and by covariate Wj at the macro-level. Furthermore,
γqk1 and γqk2 are parameters at the macro-level with a normal conjugate prior distribution.
These two parameters will build a linear combination of covariates at the macro-level Wj,
represented as µ[β]k1 and µ[β]k2. This can explain the variability of the parameters at the
micro-level, βkj1 and βkj2.
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2.3. Prior Distribution of Hibermimo

The DAG of the two-level Hibermimo in Figure 1 shows the relationships between the
distribution of the prior parameters at the micro- and macro-levels, which are independent
to avoid the high collinearity between the predictor variables in two-level Hibermimo
modeling [23,24]. At the micro-level and macro-level, the prior distribution integrates the
conjugate, informative, and pseudo-informative priors [23].

The following prior assumptions are imposed:

βkjc ∼ N
(

µ[β]kc, σ2
[β]kc

)
, (3)

γqkc ∼ N
(

µ[γ]qkc, σ2
[γ]qkc

)
, (4)

τ[β]kc ∼ Gamma
(

aτ[β]kc , bτ[β]kc

)
. (5)

Equation (3) denotes the pseudo-informative prior at the micro-level for βkjc, set
as a normal distribution. The macro-level prior γqkc, q = 0, 1, . . . , Q, k = 0, 1, . . . , K,
c = 1, 2, . . . , C in Equation (4) adjusts the normal distribution corresponding to the con-
jugate prior for the micro-level parameter µ[β]kc with a mean of µ[γ]qkc and a variance
of σ2

[γ]qkc =
1

τ[γ]qkc
. Thus, Equation (5) τ[β]kc emphasizes the parameter at the macro-level,

which is the prior precision ofβ. Based on Figure 1, the precision parameters τ[β]k1 and τ[β]k2
have a gamma distribution, the conjugate priors for the stochastic micro-level parameters
βkj1 and βkj2.

2.4. Posterior Distribution of Hibermimo

The process of estimating parameters using Bayesian Hamiltonian Monte Carlo fo-
cuses on the posterior distribution. The joint posterior distribution of all parameters, given
the data, is considered proportional to the Bernoulli mixture’s distribution likelihood with
the symmetric link function “logit” and the prior joint distribution of each hierarchy level.

The symmetric link in the two-level Hibermimo in the micro-model manages the
relationships between the average of θijc and the micro-predictor variables Xkijc. The
micro-model’s representation of the Hibermimo binary response using the symmetric link
function, based on Guo and Zhao [25], is written as:

log

[
θijc

1− θijc

]
= β0jc +

K

∑
k=1

βkjcXkijc. (6)

where β0jc is a random intercept for the j-th level of the c-th mixture. Directly from
Equation (6), we can obtain θijc as follows:

θijc =
exp

(
β0jc + ∑K

k=1 βkjcXkijc

)
1 + exp

(
β0jc + ∑K

k=1 βkjcXkijc

) . (7)

where Xkijc is the k-th predictor variable at the micro-level of the i-th unit at the j-th level
of the c-th mixture. The formation of a macro-model is carried out for each regression
coefficient as the k-th response using predictor variables in the macro-model. For the c-th
mixture component at the macro-level, the model is as follows:

β0jc = γ0kc + ∑Q
q=1 γqkcWqjc + ukjc, (8)

where γ0kc is the random intercept for the q-th unit in the c-th mixture at the macro-level,
and γqkc is the parameter coefficient for the q-th macro-predictor variable in the parameter
coefficient for the k-th micro-predictor variable in the c-th mixture. The predictor variable
for the q-th macro-predictor at the j-th level in the c-th mixture for the macro-level is Wqjc,
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and ukjc is the residual for the j-th level in the c-th mixture at the macro-level, which is
assumed to have the distribution N

(
0, σ2

u
)
. Conceptually, based on DAG in Figure 1, the

Hibermimo has the parameter β for the micro-level model, while the parameters at the
macro-level include τ[β] and γ. Therefore, with the FBMM in Equations (1), (2), (7), and (8),

θ =
(
β,τ[β], γ

)
is a Hibermimo parameter. We now have a log-likelihood function for the

Hibermimo given by:

ln pC(y, z|ω) =
m

∑
j=1

n

∑
i=1

C

∑
c=1

zic
{

ln πc + yij ln θijc +
(
1− yij

)
ln
(
1− θijc

)}
. (9)

The likelihood function in Equation (9) contains the parameter β at the micro-level and
two hyper-parameters τ[β] and γ at the macro-level. Estimating the two-level Hibermimo
model’s parameters requires an iteration method to maximize the likelihood in Equation (9),
which is a function with a non-closed form. The two-level Hibermimo of the parameters can
be estimated using the Bayesian method involving the prior and hyper-prior distributions
of each model level.

The prior distributions for β, τ[β], and γ that we used here are defined as follows. The
prior distribution of parameter β in the micro-level model applies the following:

p(β) =
C
∏

c=1

m
∏
j=1

K
∏

k=0
p
(

βkjc

)
∝

C
∏

c=1

m
∏
j=1

K
∏

k=0

{
τ1/2
[β]kjc exp

[
− τ[β]kjc

2

(
βkjc − µ[β]kjc

)2
]}

.
(10)

Furthermore, the macro-level prior distribution for parameter γ is given by

p(γ) =
C
∏

c=1

K
∏

k=0

Q
∏

q=0
p
(

γqkc

)
∝

C
∏

c=1

K
∏

k=0

Q
∏

q=0

{
τ1/2
[γ]qkc exp

[
− τ[γ]qkc

2

(
γqkc − µ[γ]qkc

)2
]}

.
(11)

The prior distributions for parameter τ[β] at the macro-level model, which is defined

as p
(

τ[β]kc

)
using the gamma distribution, can be written as:

p
(
τ[β]

)
=

C
∏

c=1

K
∏

k=0
p
(

τ[β]kc

)
∝

C
∏

c=1

K
∏

k=0

{
1

bτ[β]kc

aτ[β]kc Γaτ[β]kc

τ[β]kc
aτ[β]kc

−1

exp
[
− τ[β]kc

bτ[β]kc

]}
∝

C
∏

c=1

K
∏

k=0

{
τ[β]kc

aτ[β]kc
−1

exp
[
− τ[β]kc

bτ[β]kc

]}
.

(12)

According to Equations (9)–(12), the joint posterior micro- and macro level parameters
can be expressed as:

p(φ|y, z) ∝ pL(y, z|ω) p(ω|γ,τ[β]) p(γ,τ[β]), φ = (ω,γ,τ[β]). (13)

A Bayesian framework states that the observational data come from a probability
distribution defined by unknown parameters. Therefore, the prior distribution of all the
parameters in the hierarchical model needs to be determined before the estimation process.
Prior determination of the two-level Hibermimo model’s parameters follows a two-phase
process using the two-stage prior.

The first phase determines the Stage 1 prior based on the micro-level model. According
to Equation (13), we use the notation p1(ω|γ,τ[β]). The second phase is carried out by
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determining the Stage 2 prior for the macro-level parameters γ and τ[β]. The Stage 2 prior
is denoted p2(γ,τ[β]). The proportional posterior distribution with a two-level Hibermimo
model is, therefore, based on multiplication of the likelihood and the Stage 1 and Stage 2
priors, given by:

p(φ|y, z) =
pL(y, z|ω) p1(ω|γ,τ[β]) p2(γ,τ[β])

h(y, z)
, (14)

where h(y, z) is a total probability distribution function, which is written as:

h(y, z) =
∫
· · ·

∫
pL(y, z|ω) p1(ω|γ,τ[β]) p2(γ,τ[β])∂β∂τ[β]∂γ (15)

h(y, z) is a constant of normality that does not depend on the model parameters that
guarantee Equation (14) as the density. As a result, according to Equations (10)–(12), the
joint posterior distribution in Equation (14) with priors that are independent of each level
can be rewritten as:

p(φ|y, z ) ∝ pL(y, z|ω) p
(
ω
∣∣∣γ,τ[β]

)
p(γ) p

(
τ[β]

)
∝

m
∏
j=1

n
∏
i=1

C
∏

c=1

[
πc θijc

yij
(
1− θijc

)1−yij
]zic

×
C
∏

c=1

m
∏
j=1

K
∏

k=0

{
τ1/2
[β]kjc exp

[
− τ[β]kjc

2

(
βkjc − µ[β]kjc

)2
]}

×
C
∏

c=1

K
∏

k=0

Q
∏

q=0

{
τ1/2
[γ]qkc exp

[
− τ[γ]qkc

2

(
γqkc − µ[γ]qkc

)2
]}

×
C
∏

c=1

K
∏

k=0

{
τ[β]kc

aτ[β]kc
−1

exp
[
− τ[β]kc

bτ[β]kc

]}
.

(16)

2.5. Hamiltonian Monte Carlo (HMC)

The Hibermimo parameter estimation process utilizing a Bayesian approach using
Stan coupled with HMC algorithm is given in the following steps:

Step 1. Specify the likelihood function of the Bernoulli Mixture Model pC(y, z|ω).
Step 2. Determine the prior distributions of Hibermimo: p(β), p(γ), and p(τ[β]).
Step 3. Perform the first derivative of the ln-posterior for each Hibermimo parameter

∂ ln p(φ|y,z)
∂φ =

∂ ln p(ω,γ,τ[β] |y,z)
∂ω ,

∂ ln p(ω,γ,τ[β] |y,z)
∂γ ,

∂ ln p(ω,γ,τ[β] |y,z)
∂τ[β]

; φ = (ω,γ,τ[β]).

HMC requires the gradient of the ln-posterior’s density. In practice, the gradient
must be computed analytically [26,27].

Step 4. Set the initial value of the parameterφ0, the diagonal mass matrix I, the leapfrog
integration step size ∈ (indicating the leapfrog step jumps), the number of leapfrog
integration steps L, and the number of iterations t.

Step 5. Perform the parameter estimation of Hibermimo using the HMC algorithm;
Algorithm 1 contains a pseudo-code for an implementation of the Hamiltonian
algorithm for Hibermimo.

Step 6. Monitor and evaluate the convergence of the algorithm.
Step 7. Plot the posterior distribution of Hibermimo.
Step 8. Obtain a summary of the posterior distribution of Hibermimo.
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Algorithm 1 The Hamiltonian Monte Carlo for Hibermimo.
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HMC adopts a concept from physics to contain the local random walk performance in
the Metropolis algorithm, which allows it to move much more quickly through the target
distribution. HMC, which combines MCMC with a deterministic simulation method, is also
called hybrid Monte Carlo. A multivariate normal distribution, ρ, which is a ‘momentum’
variable, is added by HMC for each componentφ. Bothφ and ρ are then updated together
in a new Metropolis algorithm, in which the jumping distribution for φ is determined
mainly by ρ. Set the diagonal mass matrix I, the leapfrog integration step size ∈ (indicating
the leapfrog step jumps), the number of leapfrog integration steps L, and the number of
iterations t. HMC has several steps of the iteration process described through the flowchart
in Figure 2.
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3. Results
3.1. Parameter Estimation of Hibermimo

The most challenging part of undertaking a Bayesian analysis is estimating the
Bayesian model. The main difficulty is to analyze the statistical models with an appropriate
algorithm and determine the prior knowledge for a specific model under consideration.
Each parameter of the hierarchical model’s estimated value can be assigned after all the
relevant priors have been given [28].

Parameter estimation for Hibermimo is calculated using the Bayesian HMC algorithm
approach. Bayesian statistical analysis, in general, uses MCMC for fitting a wide range of
complex models. MCMC produces a summary and diagnostic statistics by storing MCMC
samples from the corresponding posterior distributions in output datasets for convergence
analysis [29].

An alternative MCMC method, HMC [30–32], has grown increasingly popular because
the algorithm’s novel properties can yield much better performance for general hierar-
chical models. Hibermimo, a complex Bayesian model, requires an HMC algorithm that
corresponds to an MCMC technique. This algorithm combines the Metropolis Monte Carlo
approach [33,34] and the Hamiltonian dynamics [35,36]. One of the MCMC algorithms
applies the adaptive sampling extension No-U-Turn Sampler (NUTS) in some estimation
programs. This research used Stan, a general-purpose software platform for fitting arbitrar-
ily complex Bayesian models of the Hibermimo type that allows full inference using the
HMC/NUTS strategy. Recently, both algorithms were included in Stan [37], making it an
essential program with high-performance statistical computation for specifying a Bayesian
model by counting the log of a probability density function.

3.2. Application

This section discusses the performance of Hibermimo applied to the Bidikmisi schol-
arship empirical case, which is a prototype of the district of East Java Province in 2015.
We used social science data, with unique binary responses (0 and 1) identified as hav-
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ing a Bernoulli mixture distribution with a finite number of mixture components. This
dataset was collected from the Ministry of Research and Technology and Higher Education
database through the Bidikmisi Division. We set the Bidikmisi scholarship recipients as the
micro-level data. Moreover, data on the social welfare indicators and statistics on people’s
welfare for the East Java Province in 2015 were used for the macro-level data.

Explanations of the pre-processing identification technique used to construct the
Bernoulli mixture distribution at the micro-level, the response variable (Y), and the predic-
tor variable at the micro-level (X) were provided by Iriawan [2]. However, we changed the
data scale for the predictor variable X12 (fourth-semester ranking) and X13 (fifth-semester
ranking) into a ratio scale. The list of district characteristics, which were used as predictors
at the macro-level (W), is presented in Table 1.

Table 1. Predictor variables at the macro-level.

Variable Description Data Scale

W1 Percentage of the poverty population Ratio
W2 The average extent of school Ratio
W3 Percentage of population aged 19–24 out of school Ratio

W4
Percentage of households with roofs made from asbestos/zinc +
bamboo/wood + straw/fiber/leaves/other Ratio

W5 Percentage of households with wooden walls Ratio
W6 Percentage of households receiving subsidies Ratio

W7
Percentage of households receiving insufficient student aid for high
school students Ratio

W8
Percentage of households whose members have accessed the
internet in the last 3 months Ratio

Modeling of the Bidikmisi scholarship grantees with the district characteristics data
was performed computationally by including the DAG Hibermimo structure into the
program code. The modeling was carried out by using the Bayesian Bernoulli mixture
aggregate regression model (BBMARM) and Hibermimo. Both models were analyzed using
Stan and applying the HMC/NUTS algorithm. The significance of the model parameters
was tested by using a credible interval, and the formation of a confidence interval was
calculated by the highest posterior density (HPD) approach [22,24,38,39]. The estimated
BBMARM was directly compared with the performance of Hibermimo.

3.2.1. Bayesian Bernoulli Mixture Aggregate Regression Model

The Bayesian Bernoulli Mixture aggregate regression model (BBMARM) was estimated
by using the micro-level predictors coupled with the macro-level predictor variables
together as one level. In this research, the analysis of the BBMARM design with the
predictor variables involved both categorical and continuous variables, 22 dummy, and
12 continuous variables. Dummy variables were used in BBMARM to capture the influence
of the categorical variables. The estimated parameters of this model produced as many as
35 parameters for each mixture component. We fitted BBMARM by using Stan with three
chains running for 3000 iterations each. Stan automatically used half of the iterations as a
warm-up and the other half for sampling [37]. The estimation results of Stan programming
for BBMARM showed compatibility with the MCMC properties, i.e., they were irreducible,
aperiodic, and recurrent. The monitoring convergence visually presented in the diagnostic
plot includes historical plots, autocorrelation plots, and density plots [40]. The estimated
parameters of BBMARM are provided in Table 2.
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Table 2. Estimation parameters of BBMARM.

Parameters Mean 2.5% 50% 97.5% n_eff Rhat

π1 0.704 0.698 0.711 0.724 8717 1
π2 0.296 0.276 0.295 0.315 8717 1
β01 0.983 0.976 0.983 0.990 9511 1
β02 0.995 0.988 0.995 0.998 10,123 1
β11 0.040 0.028 0.040 0.051 2970 1
β12 0.025 0.015 0.025 0.034 4253 1
β21 0.025 0.015 0.025 0.035 3983 1
β22 −0.026 −0.035 −0.026 −0.016 3649 1
. . . . . . . . . . . . . . . . . . . . .

β331 0.176 0.162 0.176 0.190 2755 1
β332 0.018 0.005 0.018 0.030 2404 1
β341 0.095 0.082 0.095 0.108 3246 1
β342 −0.016 −0.042 −0.016 0.011 3896 1

Samples were drawn using NUTS. For each parameter, n_eff is a crude measure of the effective sample size, and
Rhat is the potential scale reduction factor on split chains (at convergence, Rhat = 1).

Table 2 presents a summary of the parameter estimation results of BBMARM. The
values of the nodes β01 and β02 denote the intercept of the mixture components 1 and 2,
respectively. The significance of the BBMARM regression model parameters was tested
using a credible interval. The estimated parameter is supposed to be not significant when
zero lies inside the credible interval.

Based on Table 2, the characteristics of Bidikmisi acceptance that had a significant
effect on the mixture of Components 1 and 2 are the mother’s occupation (X2), ownership
of family homes (X5), the land area of family homes (X6), the extent of family residential
buildings (X7), ownership of toilet and washing facilities (X8), the number of families in
the household (X10), city distance (X11), and fourth-semester ranking (X12). The district
characteristics that significantly influenced each mixture component were the percentage
of households receiving subsidies (W6) and the percentage of households whose members
had accessed the internet in the last 3 months (W8). The BBMARM for two mixture
components can be formulated as follows:

p̂(y|ω) =
C
∑

c=1
πc pc (yi|θic)

= π1 p1 (yi|θi1) + π2 p2 (yi|θi2)
= 0.704 p1 (yi|θi1) + 0.296 p2 (yi|θi2).

(17)

where θic is an appropriate set of parameters with a Bernoulli distribution [41]. For the
binary response, based on Kay and Little [42], we used the linearity property of the
predictor “log” link function to connect the mean of θic in concert with the micro-level
predictor variables. The BBMARM for the probability mass function pc (yi|θic) can be
written as:

pc (yi|θic) = θic
yi (1− θic)

1−yi

for c = 1

log
[

θi1
1−θi1

]
= 0.983 + 0.040 d111 + 0.025 d121 + 0.058 d131 − · · ·+ 0.095 W81

and c = 2

log
[

θi2
1−θi2

]
= 0.995 + 0.025 d112 − 0.026 d122 − 0.004 d142 − · · · − 0.016 W82

(18)
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3.2.2. Hierarchical Bernoulli Mixture Model

The development of a hierarchical model for binary responses was first shown by
Mason et al. [43], Goldstein [44], and Longford [45]. An earlier methodological framework
for fitting a multilevel logit model was developed by Mason et al. [43], which obtained
the maximum likelihood using the Bayes EM algorithm (REML/Bayes EM). Interest in
these methodological and substantive algorithms directly encouraged Bryk and Rauden-
bush [46] and Goldstein [15,44] to extend multilevel models for linear data. Furthermore,
Goldstein [44] implemented a generalized least square algorithm using educational data
to measure the explanatory variables within a hierarchical structure. In supplementary
improvement approximations, Goldstein and Rasbash [47] used the available software
packages VARCL and ML3 to analyze multilevel models with binary responses, which
Rodriguez and Goldman [48] had simulated to highlight the work. Besides, a Fisher scor-
ing algorithm for fitting the general hierarchical model was developed by Longford [45].
Recently, we presented the Hibermimo, appropriating a Bayesian approach with Stan
computation to apply the HMC algorithm.

Hibermimo has been applied for modeling Bidikmisi grantees, an East Java prototype,
with four districts identified for scholarship applicants. The parameters at the micro-level
include 22 dummy and four continuous variables. Moreover, the macro-level has eight
continuous variables. Implementation of the Hibermimo conceptual estimation process
was performed by the DAG shown in Figure 1. As it is a complex Bayesian model, Hi-
bermimo requires an HMC algorithm that is compatible with the Markov Chain Monte
Carlo (MCMC) technique, which combines the Metropolis Monte Carlo approach and the
Hamiltonian dynamics’ advantages. The estimation parameters of the Hibermimo depend
on the effectiveness of Stan software, an essential program with high-performance com-
putational statistics for determining Bayesian models that compute the log of probability
density functions. For the Hibermimo estimation process enabling full Bayesian inference,
Stan used the HMC/NUTS procedure, running three chains with 3000 iterations each.

The estimation result is based on the output of the software Stan, the Hibermimo
running process, obtained to meet the MCMC property’s suitability. Taylor and Karlin [49],
including Boldstad [50], indicate that the convergence meeting strongly ergodic properties
containing irreducible, aperiodic, and recurrent. The MCMC running process is done
by running the iteration process parameter estimation. During the iteration, Stan will
generate a diagnostic plot to monitor the MCMC process’s output that has reached an
equilibrium condition. The indication of achieving this equilibrium condition can be seen
in the graphics diagnostic plot’s grammar [51] and analyzed CODA diagnostic [52–55].
A visualization is a pivotal tool for Bayesian data analysis that can be used for setting
up an initial prior value, ensuring the algorithm’s credibility, monitoring, and evaluating
convergence of the algorithm to obtain Bayesian inference. Further, the visual of the
graphics diagnostic plot is shown in Figure 3.

As shown in Figure 3, Stan can be enhanced by ggmcmc with the ggplot2 package
with the aim of including the design and implementation of MCMC diagnostics, allowing
Bayesian inference users to have better and more flexible visual diagnostic tools [56]. The
diagnostic plot shows the monitoring of the estimation process of Hibermimo’s three chains
of 3000 iterations each. The chains are displayed in different colors: red (Chain 1), green
(Chain 2), and blue (Chain 3).
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The serial plot of 3000 iterations, half as a warm-up and a half for sampling, generated
Hibermimo estimates. The process of the sample products in the MCMC process showed
no extreme values. As seen in Figure 3a, the serial plot shows random values with a pattern
that tends to be stationary and random. Moreover, the aperiodic properties can be displayed
by the serial plot pattern of the characteristics. Recurrence is illustrated by a serial plot
showing stable parameter samples in a particular value domain. The autocorrelation plot
in Figure 3b strengthens the evidence that the resulting sample of Hibermimo parameter
estimates are random, indicated by the lag value, with only Lag 0 being close to zero at the
subsequent lag. The density plot in Figure 3, which is visually symmetrical in shape for
each chain, shows that the density estimation results for Hibermimo with three chains of
1500 iterations have a normal distribution. Based on the MCMC diagnostic plot, it can be
concluded that the parameter estimation process has reached convergence. A convergence
analysis with CODA diagnostic parameter estimation of Hibermimo with three chains and
1500 iterations found that a stationary test for all mixture parameters were “passed” as
specifically convergent, based on Gelman–Rubin [52] diagnostics. Meanwhile, for Raftery–
Lewis diagnostics in CODA [53], all parameters had a dependency factor (DF) of <5 in each
chain, indicating a convergent condition. Moreover, by using the visual structure graphic
diagnostics of Hibermimo, we obtained the “mcmc_pairs” function, which can also look at
multiple parameters, including βkjc, γqkc, and τ[β]kc. A square plot matrix with univariate
marginal distributions along the diagonal as histograms and bivariate distributions of the
diagonal as scatterplots is shown in Figure 4.
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The univariate histograms and bivariate scatterplots for selected parameters in Figure 4
were used for identifying collinearity. As can be seen, the dots on the larger bivariate plot
indicate that there are no correlating variables between the micro- and macro-levels. Fur-
thermore, we can fit the Hibermimo because there is no indication of multicollinearity in
each hierarchical level.

The Hibermimo parameter significance test, a two-level hierarchical model, uses a
credible interval based on the Koop hypothesis [39]. If the credible interval contains a zero
value, it concludes that the hypothesis can be rejected, which means that the estimated
parameters are not significant. Table 3 shows that the estimation results of Hibermimo for
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the micro-level parameters in component Mixture 1 and Mixture 2 that are not significant in
all districts are the variables X12 (fourth-semester ranking) and X13 (fifth-semester ranking).
The parentheses below the estimated mean values denote the standard deviation of each
beta parameter. Moreover, all the characteristics of the students applying for the Bidikmisi
scholarship were significant in the four districts. This means that the characteristics of
the Bidikmisi registration form had a significant effect on the acceptance of Bidikmisi
scholarships in each district. Based on Table 3, the Hibermimo model for two mixture
components can be formulated as follows:

p̂(y|ω) =
C
∑

c=1
πc pc

(
yij
∣∣θijc

)
= π1 p1

(
yij
∣∣θij1

)
+ π2 p2

(
yij
∣∣θij2

)
= 0.714 p1

(
yij
∣∣θij1

)
+ 0.286 p2

(
yij
∣∣θij2

)
.

(19)

Table 3. Estimation parameters of the Hibermimo micro-level model.

Parameter
Districts of Micro-Level Mix-1 Districts of Micro-Level Mix-2

Bangkalan Sampang Pamekasan Sumenep Bangkalan Sampang Pamekasan Sumenep

β0
0.943

(0.042)
0.944

(0.065)
0.942

(0.048)
0.943

(0.030)
0.607

(0.040)
0.610

(0.046)
0.608

(0.093)
0.608

(0.087)

β1
0.358

(0.012)
0.358

(0.019)
0.359

(0.036)
0.359

(0.012)
0.129

(0.076)
0.129

(0.033)
0.128

(0.072)
0.129

(0.040)

β2
0.052

(0.031)
0.051

(0.030)
0.051

(0.037)
0.051

(0.013)
0.284

(0.024)
0.286

(0.018)
0.285

(0.035)
0.285

(0.077)

β3
0.144

(0.047)
0.145

(0.018)
0.146

(0.010)
0.145

(0.017)
0.364

(0.052)
0.363

(0.019)
0.367

(0.018)
0.366

(0.083)

β4
0.283

(0.059)
0.284

(0.038)
0.284

(0.011)
0.283

(0.074)
0.425

(0.018)
0.429

(0.025)
0.428

(0.024)
0.427

(0.017)

β5
0.243

(0.090)
0.246

(0.020)
0.243

(0.019)
0.243

(0.037)
0.390

(0.013)
0.391

(0.085)
0.390

(0.017)
0.391

(0.013)

β6
0.444

(0.029)
0.447

(0.046)
0.447

(0.048)
0.446

(0.046)
0.355

(0.027)
0.357

(0.051)
0.355

(0.018)
0.355

(0.074)

β7
0.161

(0.068)
0.162

(0.033)
0.162

(0.010)
0.161

(0.014)
0.331

(0.020)
0.332

(0.014)
0.331

(0.014)
0.331

(0.014)

β8
0.208

(0.035)
0.209

(0.014)
0.209

(0.093)
0.208

(0.011)
0.286

(0.063)
0.287

(0.013)
0.285

(0.016)
0.286

(0.013)

β9
0.241

(0.093)
0.242

(0.035)
0.242

(0.021)
0.242

(0.013)
0.037

(0.023)
0.038

(0.006)
0.037

(0.028)
0.037

(0.010)

β10
0.424

(0.010)
0.427

(0.034)
0.424

(0.087)
0.424

(0.015)
0.082

(0.001)
0.083

(0.001)
0.080

(0.002)
0.082

(0.004)

β11
0.104

(0.077)
0.106

(0.014)
0.103

(0.075)
0.103

(0.094)
0.116

(0.059)
0.117

(0.067)
0.115

(0.078)
0.116

(0.028)

β12
0.084

(0.007)
0.086

(0.005)
0.086

(0.008)
0.085

(0.005)
0.391

(0.012)
0.393

(0.015)
0.390

(0.026)
0.390

(0.014)

β13
0.092

(0.004)
0.095

(0.004)
0.090

(0.002)
0.092

(0.002)
0.490

(0.021)
0.494

(0.031)
0.493

(0.020)
0.492

(0.015)

β14
0.352

(0.010)
0.354

(0.017)
0.351

(0.030)
0.352

(0.017)
0.256

(0.013)
0.256

(0.019)
0.255

(0.007)
0.255

(0.022)

β15
0.181

(0.001)
0.183

(0.008)
0.181

(0.007)
0.181

(0.009)
0.320

(0.009)
0.323

(0.007)
0.322

(0.016)
0.321

(0.091)

β16
0.583

(0.017)
0.587

(0.013)
0.584

(0.028)
0.584

(0.020)
0.108

(0.071)
0.108

(0.090)
0.110

(0.023)
0.109

(0.086)

β17
0.231

(0.011)
0.233

(0.010)
0.232

(0.063)
0.232

(0.089)
0.415

(0.065)
0.420

(0.016)
0.407

(0.013)
0.411

(0.011)
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Table 3. Cont.

Parameter
Districts of Micro-Level Mix-1 Districts of Micro-Level Mix-2

Bangkalan Sampang Pamekasan Sumenep Bangkalan Sampang Pamekasan Sumenep

β18
0.083

(0.001)
0.084

(0.002)
0.084

(0.004)
0.083

(0.003)
0.169

(0.043)
0.166

(0.013)
0.170

(0.039)
0.169

(0.011)

β19
0.185

(0.013)
0.187

(0.015)
0.187

(0.020)
0.186

(0.016)
0.121

(0.069)
0.123

(0.013)
0.122

(0.066)
0.122

(0.068)

β20
0.083

(0.004)
0.068

(0.004)
0.059

(0.004)
0.071

(0.002)
0.141

(0.046)
0.140

(0.029)
0.144

(0.067)
0.143

(0.046)

β21
0.412

(0.019)
0.414

(0.020)
0.414

(0.013)
0.413

(0.014)
0.214

(0.014)
0.218

(0.024)
0.211

(0.032)
0.212

(0.071)

β22
0.621

(0.058)
0.163

(0.029)
0.621

(0.053)
0.162

(0.060)
0.096

(0.010)
0.096

(0.003)
0.099

(0.013)
0.097

(0.069)

β23
−0.398
(0.042)

−0.401
(0.013)

−0.398
(0.008)

−0.398
(0.012)

0.285
(0.052)

0.286
(0.011)

0.285
(0.015)

0.285
(0.016)

β24
0.526

(0.009)
0.252

(0.017)
0.540

(0.016)
0.254

(0.097)
0.564

(0.072)
0.568

(0.098)
0.567

(0.085)
0.566

(0.090)

β25
0.262 *
(0.011)

0.267 *
(0.046)

0.265 *
(0.011)

0.266 *
(0.077)

0.326 *
(0.010)

0.328 *
(0.047)

0.328 *
(0.023)

0.327 *
(0.018)

β26
0.596 *
(0.065)

0.581 *
(0.034)

0.606 *
(0.019)

0.599 *
(0.029)

0.881 *
(0.064)

0.885 *
(0.012)

0.879 *
(0.016)

0.881 *
(0.019)

Note: * the parameter estimate is not significant at α = 5%.

Hibermimo’s posterior summary of the estimation of the micro-level parameters,
including the mean and standard deviation (in parentheses), are reported in Table 3.

The Hibermimo micro-level model for j = 1, Bangkalan City, can be written as follows:

pc
(
yij
∣∣θijc

)
= θijc

yij
(
1− θijc

)1−yij

for c = 1 and j = 1

log
[

θi11
1−θi11

]
= 0.943 + 0.358 d11(i11) + 0.052 d12(i11) + · · ·+ 0.596 X13(i11)

and c = 2 and j = 1

log
[

θi12
1−θi12

]
= 0.607 + 0.129 d11(i12) + 0.284 d12(i12) + · · ·+ 0.881 X13(i12).

(20)

A summary of estimation results of the Hierarchical Bernoulli mixture model (Hiber-
mimo) for the macro-level Mixture 1 components is presented in Table 4. The parentheses
below the estimated mean value contain the standard deviation of each gamma parameter.
Among the macro-level variables, all model parameters were statistically significant, mean-
ing that socio-economic characteristics of the district influence the probability of students
receiving Bidikmisi scholarships. This study assumes that the aspects of a district generally
affect the binary response. It presumes that the features of the macro-level have a posi-
tive relationship with a response. Furthermore, the number of families in the household
(per person) harms the status of the scholarship recipient for a Mixture 1 component. As
mentioned, the individual variables included the following: father’s job (X1), mother’s job
(X2), father’s education (X3), mother’s education (X4), ownership of family homes (X5),
land area of family homes (X6), the extent of family residential buildings (X7), ownership
of toilet washing facilities (X8), water source used by the family (X9), number of families
in the household (per person) (X10), city distance (X11), fourth-semester ranking (X12),
and fifth-semester ranking (X13).
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Table 4. Estimation parameter of the Hibermimo macro-level model for Mixture 1 component.

βkjc
Macro-Level Parameters (γqkc)

γ0k1 γ1k1 γ2k1 γ3k1 γ4k1 γ5k1 γ6k1 γ7k1 γ8k1

β0j1
0.936

(0.076)
0.002

(0.008)
0.003

(0.003)
0.008

(0.001)
0.001

(0.003)
0.001

(0.002)
0.002

(0.002)
0.010

(0.002)
0.005

(0.004)

β1j1
0.356

(0.011)
0.002

(0.006)
0.001

(0.007)
0.002

(0.005)
0.007

(0.005)
0.001

(0.007)
0.002

(0.009)
0.004

(0.002)
0.007

(0.002)

β2j1
0.053

(0.004)
0.003

(0.008)
0.001

(0.003)
0.002

(0.001)
0.003

(0.001)
0.0001
(0.001)

0.001
(0.002)

0.008
(0.001)

0.002
(0.001)

β3j1
0.142

(0.020)
0.001

(0.001)
0.007

(0.010)
0.001

(0.002)
0.002

(0.001)
0.001

(0.002)
0.006

(0.001)
0.001

(0.001)
0.009

(0.012)

β4j1
0.278

(0.030)
0.002

(0.003)
0.009

(0.002)
0.003

(0.005)
0.003

(0.004)
0.002

(0.003)
0.006

(0.009)
0.003

(0.004)
0.007

(0.002)

β5j1
0.239

(0.027)
0.001

(0.001)
0.003

(0.003)
0.002

(0.002)
0.001

(0.002)
0.009

(0.001)
0.005

(0.007)
0.004

(0.004)
0.006

(0.007)

β6j1
0.444

(0.032)
0.004

(0.005)
0.010

(0.018)
0.004

(0.004)
0.015

(0.011)
0.002

(0.006)
0.010

(0.013)
0.010

(0.009)
0.020

(0.023)

β7j1
0.159

(0.014)
0.001

(0.003)
0.007

(0.001)
0.001

(0.001)
0.005

(0.003)
0.002

(0.002)
0.003

(0.003)
0.002

(0.001)
0.002

(0.005)

β8j1
0.203

(0.062)
0.004

(0.003)
0.004

(0.008)
0.002

(0.001)
0.001

(0.001)
0.002

(0.001)
0.006

(0.003)
0.002

(0.001)
0.001

(0.002)

β9j1
0.239

(0.036)
0.003

(0.004)
0.002

(0.002)
0.002

(0.002)
0.005

(0.006)
0.002

(0.002)
0.005

(0.005)
0.004

(0.001)
0.002

(0.002)

β10j1
0.414

(0.087)
0.018

(0.002)
0.011

(0.002)
0.003

(0.003)
0.007

(0.001)
0.007

(0.007)
0.009

(0.003)
0.003

(0.003)
0.008

(0.010)

β11j1
0.100

(0.015)
0.007

(0.001)
0.004

(0.001)
0.001

(0.002)
0.002

(0.003)
0.008

(0.0004)
0.003

(0.004)
0.001

(0.001)
0.004

(0.005)

β12j1
0.092

(0.013)
0.002

(0.001)
0.003

(0.005)
0.010

(0.001)
0.005

(0.001)
0.007

(0.001)
0.004

(0.006)
0.002

(0.001)
0.008

(0.012)

β13j1
0.080

(0.009)
0.051

(0.007)
0.005

(0.001)
0.0002
(0.001)

0.001
(0.002)

0.002
(0.002)

0.002
(0.002)

0.008
(0.001)

0.008
(0.001)

β14j1
0.338

(0.026)
0.006

(0.007)
0.005

(0.009)
0.012

(0.015)
0.011

(0.017)
0.005

(0.009)
0.005

(0.004)
0.004

(0.003)
0.002

(0.011)

β15j1
0.177

(0.021)
0.002

(0.003)
0.004

(0.004)
0.002

(0.003)
0.005

(0.006)
0.007

(0.004)
0.003

(0.005)
0.002

(0.001)
0.009

(0.013)

β16j1
0.577

(0.015)
0.004

(0.002)
0.005

(0.004)
0.004

(0.003)
0.010

(0.006)
0.007

(0.004)
0.006

(0.006)
0.011

(0.010)
0.020

(0.016)

β17j1
0.226

(0.013)
0.002

(0.005)
0.008

(0.012)
0.004

(0.002)
0.002

(0.003)
0.002

(0.005)
0.007

(0.005)
0.004

(0.004)
0.003

(0.007)

β18j1
0.080

(0.006)
0.001

(0.001)
0.006

(0.001)
0.001

(0.001)
0.003

(0.003)
0.002

(0.001)
0.002

(0.002)
0.009

(0.002)
0.001

(0.002)

β19j1
0.181

(0.023)
0.002

(0.003)
0.006

(0.005)
0.002

(0.002)
0.008

(0.009)
0.002

(0.004)
0.009

(0.011)
0.003

(0.004)
0.011

(0.013)

β20j1
0.092

(0.008)
0.006

(0.001)
0.001

(0.002)
0.002

(0.001)
0.002

(0.002)
0.005

(0.001)
0.088

(0.002)
0.009

(0.001)
0.003

(0.004)

β21j1
0.409

(0.029)
0.004

(0.003)
0.012

(0.011)
0.001

(0.002)
0.005

(0.010)
0.002

(0.002)
0.012

(0.010)
0.003

(0.007)
0.004

(0.004)

β22j1
0.158

(0.072)
0.003

(0.004)
0.003

(0.002)
0.003

(0.001)
0.002

(0.002)
0.002

(0.002)
0.002

(0.002)
0.002

(0.001)
0.008

(0.006)

β23j1
−0.390
(0.013)

−0.005
(0.004)

−0.004
(0.001)

−0.007
(0.0003)

−0.0004
(0.001)

−0.004
(0.0003)

−0.006
(0.001)

−0.001
(0.000)

−0.0003
(0.001)

β24j1
0.250

(0.035)
0.003

(0.004)
0.009

(0.003)
0.002

(0.003)
0.006

(0.008)
0.008

(0.002)
0.001

(0.002)
0.008

(0.002)
0.004

(0.007)

β25j1
0.254

(0.019)
0.008

(0.001)
0.010

(0.007)
0.004

(0.003)
0.005

(0.005)
0.003

(0.003)
0.003

(0.003)
0.040

(0.004)
0.011

(0.009)

β26j1
0.657

(0.024)
0.056

(0.011)
0.053

(0.016)
0.044

(0.009)
0.057

(0.006)
0.045

(0.031)
0.001

(0.049)
0.036

(0.017)
0.092

(0.032)
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Empirical studies that have examined the determinants of the uniqueness of a binary
response identified as having a Bernoulli finite mixture distribution in terms of a single
structure have dealt separately with Bayesian Bernoulli Mixture Aggregate Regression
Model and a Hibermimo micro-level model. This study utilized a multilevel model because
the socio-economic features of districts affected the recipients of Bidikmisi scholarship
decisions. Since the dependent variable was binary, Hibermimo constructed two sub-
models: the micro-level model dealt with individual variables, and the macro-level model
dealt with district variables.

In the results of the Hibermimo macro-level model for Mixture 1 component, the
proportions of Mixture 1 and Mixture 2 components, respectively, are 0.714 and 0.286. The
Hibermimo of the macro-level model for c = 1 with the coefficient of gamma for Mixture 1
component is specified as follows:

β0j1 = 0.936 + 0.002 W1j1 + 0.003 W2j1 + 0.008 W3j1 + 0.001 W4j1+

0.001 W5j1 + 0.002 W6j1 + 0.010 W7j1 + 0.005 W8j1,

β1j1 = 0.356 + 0.002 W1j1 + 0.001 W2j1 + 0.002 W3j1 + 0.007 W4j1+

0.001 W5j1 + 0.002 W6j1 + 0.004 W7j1 + 0.007 W8j1,

and for k = 26

β26j1 = 0.657 + 0.056 W1j1 + 0.053 W2j1 + 0.044 W3j1 + 0.057 W4j1+

0.045 W5j1 + 0.001 W6j1 + 0.036 W7j1 + 0.092 W8j1.

(21)

4. Discussion

The uniqueness of the two mixture components in this study was formed using two
alternative models. The first model used only one level of aggregate regression, specifically
BBMARM, and the second model used a multilevel model, which is Hibermimo. Table 5
presents the Widely Applicable Information Criteria (WAIC) values used for measuring the
quality of the best designs. The WAIC successfully demonstrated the prediction accuracy
estimation of the Bayesian model using log-likelihood, which was evaluated in a posterior
simulation of parameter values. It has several advantages over general estimates, such as
akaike information criterion (AIC) and deviance information criterion (DIC), which are
mainly used in mixture modeling [57]. The best model is selected by comparing the WAIC
for each model; the results are presented in Table 5.

Table 5. Selection of the best model with WAIC.

Model WAIC

Bayesian Bernoulli Mixture aggregate regression model (BBMARM) 2392.3
Hierarchical Bernoulli mixture model (Hibermimo) 1218.9

The WAIC value of the Hibermimo is smaller than that of the BBMARM. Hibermimo
has thus demonstrated its ability to support modelling of binary response identified as
having a Bernoulli distribution with two mixture components.

5. Conclusions

In this study, our motivation is to develop a unique data-driven model in its binary
response. The data-driven approach that we developed through combining the concept of
hierarchical structure with the Bernoulli Mixture Model (BMM) has been able to provide
new findings. As a follow-up to our new model design, the Hierarchical Bernoulli mixture
model (Hibermimo), both its architecture and computational methods, have been studied
theoretically and empirically. The Hibermimo was compared with the Bayesian Bernoulli
mixture aggregate regression model (BBMARM), both of which were analyzed using
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Stan software with the HMC/NUTS algorithm. Furthermore, to determine the model’s
effectiveness, we compared Hibermimo with BBMARM using WAIC.

The Monte Carlo Hamiltonian algorithm with a No-U-Turn sampler (HMC/NUTS)
attracted considerable interest for implementation in the proposed Hibermimo model.
The micro-level of Hibermimo is considered the symmetric link (logit). The logit link
function provides a relationship between the linear predictors and the Bernoulli mixture
distribution’s average utility.

The study has performed a compatible syntax program computation utilizing the
HMC/NUTS algorithm for analyzing the BBMARM model and Hibermimo. In the model
estimation, Hibermimo yielded a result of ~90% compliance with the modeling of each
district. A selection of the best model with the WAIC value showed that Hibermimo was
more able to accommodate the unique data-driven distribution of the Bernoulli mixture.
Hibermimo could capture the phenomenon of mixing between observations in social sci-
ence dimensions, which focuses on tracing the relationship between the unit of observation
and the social environment.

We only compare the performance of Hibermimo with BBMARM because both have
a Bernoulli distribution with a finite mixture, analyzed using the same software and
the same HMC/NUTS algorithm but with different steps. We have not compared the
model with other analytical methods because we focus on the development of novelties
that we find both in terms of the mixture architecture and its computational approaches.
However, based on the uniqueness of the data-driven Bernoulli Mixture that we found, we
compared the Bernoulli Mixture model with several methods based on the achievement of
the accuracy value applied to the problem of distributing Bidikmisi scholarships in East
Java. These methods include the BMM, random forest, and SMOTE-Bagging. Based on the
Area Under Curve (AUC) and geometric mean (g-mean) values, the BMM using the Gibbs
Sampler algorithm run in Software Open-Bugs performs better than the random forest and
SMOTE-Bagging [2]. For further research, a comparison between Hibermimo with random
forest and SMOTE-Bagging which accommodates the mixture architecture with equivalent
computational methods and analyzed using appropriate assays is highly recommended.

Moreover, the application of Hibermimo to the social science dataset using the sym-
metrical logit link function demonstrated exemplary performance. Future research should
consider a flexible link function from a new class of generalized logistic distribution,
namely a flexible generalized logit (Glogit) link, based on the simulation research of Prase-
tyo et al. [58]. The Glogit link is likely a good option and could be used in practice due to
its flexibility.
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