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Abstract. This research has a purpose to develop Bernoulli Mixture model for Bidikmisi data 

modelling using Bayesian approach. Model development is done by considering the specificity 

in the data acceptance of Bidikmisi scholarship prototype in East Java Province. Bidikmisi 

acceptance status having a binary type (0 and 1) coupled with the main criteria factor of parent 

income and the number of dependents family produces a structure of Bernoulli mixture 

distribution with two components. The characteristics of each component can be identified 

through the Bernoulli Mixture modelling by involving the covariates of Bidikmisi scholarship 

recipients. The estimating parameter was performed using Bayesian Markov Chain Monte Carlo 

(MCMC) couple with the Gibbs Sampling algorithm. This model is applied to data registrants 

Bidikmisi districts/cities in the province of East Java as many as 44,489 students. This model 

shows the smallest value of Deviance Information Criteria (DIC) compared with Bayesian binary 

logistic regression.  

1. Introduction 

Bernoulli Mixture Model (BMM) is a model used to analyze the Bernoulli Mixture distributed data. 

Most of the references on binary data, the BMM research are mostly applied in the area of text mining 

[1]. BMM was first performed by Duda and Hart [2]. In its development, some research related to BMM 

were performed by Grim et al. [3], González, et al. [4], and Vidal [5,6], Patrikainen and Manilla [7], 

Zhu et al. [8], Sun et al. [9], Tikka et al. [10], Hollmen and Tikka [11], Myllykangas et al. [12], Bouguila 

[13] and Saeed et al. [14]. 

In this study, the development of BMM using Bernoulli Mixture regression analysis was applied in 

the social field by using local data of Bidikmisi scholarship. Bidikmisi tuition assistance program is an 

education assistance program by the Indonesian government through the Directorate General of Higher 

Education, which was launched in 2010. The government through Bidikmisi program aims to achieve 

equitable access and learning opportunities at university level and produce the independent, productive 

and having social care graduates who can play a role to solve the poverty chains to fill the needs of the 

Indonesian human resources and are ready for competing in the ASEAN Economic Community (MEA) 

[15].  

This research employed the Bidikmisi prototype data of East Java Province. In 2015, the registrants 

of Bidikmisi in East Java were 44,489 students. The results of the data exploration showed that only 

24.07% were awarded the scholarships, while those who were not successful were 75.93%, ie 33,780 

student applicants. Bidikmisi grantee status with Binary type (0 and 1) was coupled with the main 

criteria factor, namely parent income and total of dependent. This combination produced the Bernoulli 

mixture data distribution with two components. Characteristics of each component of Bernoulli mixture 
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can be identified through the Bernoulli Mixture modelling by involving the founding covariates of 

Bidikmisi scholarship grantee. 

This study aims to perform the classification analysis of acceptance of Bidikmisi based on acceptance 

conditions with indicators of family ability. The classification is done by competing the Bayesian 

Bernoulli Mixture regression and Bayesian binary logistic regression. Both methods are analyzed using 

openBUGS software. Furthermore, the results of the analysis are used to compile the accuracy of 

Bidikmisi acceptance classification.  

 
2. Literature Review 

2.1. Bernoulli Mixture Model 

If random sampleY is independently distributed Bernoulli Mixture derived from i -units, then there will 

be a vector  1 2

T

ny y yy =  with 1,2, ,i n , which can contain L groups with the 

proportion 1 2, ,..., Lπ . The finite mixture model of Y with L number components could have 

the density functions as follows [16]: 

   
1

L

i l l i

l

p y p y


 , ( 1) 

in which L is the number of mixture components and for each l ,  l ip y is the mixture density 

component and l is the non-negative quantity which amounts to one, that is: 

1

1
L

l

l




 . ( 2) 

BMM based on model ( 1), if  1 2, , , nY Y YY  is a random sample. The goal is to partition Y into 

L  (might be unknown, but limited) groups. The finite mixture density with L  components can be 

written as [17]: 

   
1

| , , |
L

l l l

l

p L p 


Y Y  , ( 3) 

where  .lp  is called with the mixture density lth component,  1 2, , , L   is a mixture density 

component parameter, and  1, , L    is the mixture proportion. 

2.2. Bayesian MCMC 

Bayesian Markov Chain Monte Carlo (Bayesian MCMC) is an approach, which applies Gibbs sampling 

process conducted through sampling by means of a series of Gibbs random variables based on the basic 

properties of Markov Chain [18]. Inference using the Bayesian approach to the parameter estimation 

process is done by integrating the posterior distribution. Numerically can be done integration through a 

simulation procedure commonly known as Markov Chain Monte Carlo (MCMC) method. The following 

are given the work steps of Markov Chain Monte Carlo method in general [19], namely:  

1.   Choosing a starting value 
 0
θ . 

2.  Generating value 
 

,  1,...,
m

m Mθ  until they reached convergence in distribution. 

3.  Diagnosing the convergence of the chain of θ used for monitoring. If the convergence diagnosis 

fails for length of M, then do some additional observation by increasing the larger M. 

4.   Cutting the first B observations as burn-in observations and dispose them. 

5.  Sampling some data 
      1 2

, , ,
B B M 

θ θ θ as the estimated posterior parameters distribution. 

6.  Plotting each posterior parameter distribution (as the univariate marginal distribution each). 

7.  Finally, obtain summaries of the characteristics of the posterior distributions of θ . 
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3. Methodology 

3.1 Source of Data 

The data used in this research was sourced from Database of Ministry of Research, Technology and 

Higher Education through Bidikmisi channel, that was Bidikmisi data of all districts in East Java 

Province in 2015.  
 

3.2 Variable Research               

Research variables used in this study consisted of the response variable (Y) and the predictor variable 

(X). 

Y = The acceptance Status of Bidikmisi Scholarship (1 = accepted, 0 = not accepted) 

1X  = Father's job with four dummies – b11 as an agricultural sectors, b12 as the government employee, 

b13 as an entrepreneur, and b14 as a private employee;  

2X  = Mother's Job with four dummies b21, b22, b23, and b24 defined as in Father's job;  

3X = Father's Education with three dummies – b31 as non educated, b32 as elementary to senior high 

school education, and b33 as higher education;  

4X  = Mother's Education with three dummies – b41, b42, and b43 defined as in Father's Education. 

Each dummy variable has the value of 0 or 1. 
 

3.3 Research Design 

Classification analysis procedures using Bayesian Bernoulli mixture regression model and Bayesian 

binary logistic regression model are given the following research flows in Figure 1: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Flowchart Classification Bidikmisi using Bayesian Bernoulli Mixture Regression Model and 

Bayesian Binary Logistic Regression Model 
 

4. Research Result 

4.1. Pre-processing 

The explanations of the techniques used in the pre-processing stages of identification for building the 

Bernoulli mixture distribution are as follows: 

Step 1. take response variable (Y) 

Step 2. select covariate "father’s income", "mother’s income" and "family dependent" 

Step 3. Create a new covariate by counting the amount of "dad's income" and "maternal income" 

divided by "the number of family dependents", then name it with "Code Category (CC)". 

Step 4. coding the covariate "CC" with the following criteria: 

0 = if CC> Rp. 750,000 per head in the family included in the category of wealthy family 

1 = if CC <Rp. 750,000 per head in the family fall into the category of poor families. 

Step 5. match the response variable (Y) to the CC in Step 4 to the AC (Acceptance Condition) with the 
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Bidikmisi acceptance classification table of "wrong" and "right" which are given as follows: 

 

Table 1. Identification Components Mixture of Bidikmisi Scholarship 2015 
 

Y CC AC  Condition Interpretation 

1 0 0 Wrong Acceptance Condition is wrong (AC = 0) if the grantee (Y = 1) is 

followed with the category of wealthy family (CC = 0)  

0 1 0 Wrong Acceptance Condition is wrong (AC = 0) if the grantee (Y = 0) is 

followed with the category of poor family (KK = 1)  

1 1 1 Right Acceptance Condition is right (AC = 1) if the grantee (Y = 1) is 

followed with the category of poor family (CC = 1)  

0 0 1 Right Acceptance Condition is wrong (AC = 0) if the grantee (Y = 0) is 

followed with the category of wealthy family (CC = 0)  
 

The pre-processing result by involving founder covariate of the Bidikmisi scholarship shows response 

data of the Bernoulli mixture distribution with two components, namely component of wrong acceptance 

condition and component of right acceptance condition. Based on Table 1, it is obtained that Bernoulli-

1 with 1=0.62 (AC is wrong) and Bernoulli-2 with 2=0.38 (AC is right). 
 

4.2. Bayesian Binary Logistic Regression 

The doodle of Bayesian binary logistic regression to model the acceptance of the Bidikmisi scholarship 

is presented in Figure 2. 

 
 

Figure 2. Doodle of Bayesian Binary logistic regression 
 

After compiling the doodle and its syntax, the next step is running program to get the estimated 

regression model. The serial historical sample values of each posterior parameter show a stable random 

pattern in a fixed domain, indicating the fulfillment of irreducible, aperiodic and recurrent properties. 

The historical sample series of the first six posterior estimation values (b0, b11, b12, b13, b14, and b21) are 

shown through the serial plot is presented in Figure 3. While their significant parameter estimates of the 

binary logistic regression using a link function logit is provided in Table 2. 

Based on the significant parameter estimation by using Bayesian binary logistic regression in Table 

2, the model can be expressed as follows: 

 

 
 11 12 13 14 21 23 32 33 41 42 43

11 12 13

exp 1,6540 +0,2612 b - 0,4487 b + 0,2486 b  + 0,1235 b  + 0,3779 b + 0,3335 b - 0,1147 b 0,0623 b 0,1661 b 0,1823 b 0,0469 b
ˆ

1 exp 1,6540 +0,2612 b - 0,4487 b + 0,2486 b  + 0,123
x

    


  14 21 23 32 33 41 42 435 b  + 0,3779 b + 0,3335 b - 0,1147 b 0,0623 b 0,1661 b 0,1823 b 0,0469 b   

 

 

4.3. Bernoulli Mixture Bayesian Regression 

The doodle of regression of Bernoulli Mixture Bayesian to model the Bidikmisi scholarship 

acceptance is presented in Figure 4. 
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 (a) b0 (b) b11   
  

 
 (c) b12 (d) b13   
  

 
 (e) b14 (f) b21   
  

Figure 3. Serial Plot of the first six posterior parameters b0, b11, b12, b13, b14, b21 with 

100.000 Iterations (10.000 thin 10) for Bayesian Binary Logistic Regression 
 

Table 2.   Parameters Estimation of Bayesian Binary Logistic Regression 
 

Parameter 
Dummy 

Parameter 
Mean 

Standar 

Deviasi 
2,5% 97,5% Significant 

Constant  -1,6540 0,0851 -1,8210 -1,4880  

1X  b11 0,2612 0,0492 0,1641 0,3562  

 b12 -0,4487 0,2133 -0,8687 -0,0315  
 b13 0,2486 0,0535 0,1448 0,3528  
 b14 0,1235 0,0526 0,0219 0,2259  

2X  b21 0,3779 0,0776 0,2277 0,5306  

 b22 - - - - - 

 b23 0,3335 0,0827 0,1725 0,4967  
 b24 0,1656 0,0862 -0,0027 0,3375 No 

3X  b31 -0,0587 0,0483 -0,1533 0,0356 No 

 b32 -0,1147 0,02042 -0,1549 -0,0751  
 b33 0,0623 0,0201 0,0232 0,1012  

4X  b41 -0,1661 0,0455 -0,2556 -0,0758  

 b42 -0,1823 0,0198 -0,2208 -0,1437  
 b43 0,0468 0,0209 0,0060 0,0877  

 

 
 

 

 

 

 

 

 

 

 

 

Figure 4. Doodle of Bernoulli Mixture Bayesian Regression 
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Figure 4 tells that the predicted parameters bern[1,i] and bern[2,i] have the same link function but 

are connected to different parameters. Node T[i] functions to separate data based on the acceptance 

condition of Bidikmisi that contains value 1 if the acceptance condition is false, and 2 if the acceptance 

condition is correct. Therefore, data in group 1 was analyzed on the bern[1,i] and data in group 2 was 

analyzed on the bern[2, i]. Prior parameters were normal distributions because the modeling method 

used a link function. Node P[1,2] was used to determine the proportions of group 1 and group 2 in the 

model. The total value of P[1] and P[2] is one. The parameter estimation is shown in Table 3. 

Table 3. Parameters Estimation of Bernoulli Mixture Bayesian Regression  
 

Parameter 
Dummy 

Parameter 
Mean 

Standar 

Deviasi 
2,5% 97,5% Significant 

P[1]  0,6148 0,0023 0,6103 0,6194  
P[2]  0,3852 0,0023 0,3806 0,3897  

b0[1]  1,0490 0,1256 0,8015 1,2930  
b0[2]  -1,7490 0,0875 -1,9130 -1,5750  

1X  b11[1] -1,3060 0,0711 -1,4450 -1,1640  

 b11[2] 0,8516 0,0525 0,7482 0,9546  
 b12[1] -1,1700 0,3535 -1,8760 -0,4949  
 b12[2] -0,6488 0,2256 -1,0970 -0,2113  
 b13[1] -1,1340 0,0792 -1,2890 -0,9791  
 b13[2] 0,5607 0,0591 0,4451 0,6775  
 b14[1] -0,7730 0,0757 -0,9218 -0,6228  
 b14[2] -0,0154 0,0578 -0,1298 0,0968 No 

2X  b21[1] -2,0240 0,1143 -2,2470 -1,7960  

 b21[2] 1,1030 0,0801 0,9451 1,2580  
 b23[1] -1,5540 0,1213 -1,7920 -1,3140  
 b23[2] 0,5299 0,0879 0,3573 0,7015  
 b24[1] -1,3330 0,1272 -1,5820 -1,0820  
 b24[2] 0,0041 0,0951 -0,1828 0,1900 No 

3X  b31[1] -0,6911 0,1137 -0,9169 -0,4709  

 b31[2] 0,0688 0,0560 -0,04112 0,1781 No 

 b32[1] -0,2939 0,0378 -0,3692 -0,2201  
 b32[2] -0,0917 0,0239 -0,1387 -0,0445  
 b33[1] 0,2806 0,0343 0,2139 0,3484  
 b33[2] 0,0415 0,0233 -0,0038 0,0870 No 

4X  b41[1] -0,2338 0,0963 -0,4225 -0,0467  

 b41[2] -0,0854 0,0536 -0,1901 0,0197 No 

 b42[1] -0,1130 0,0355 -0,1833 -0,0432  
 b42[2] -0,1479 0,0228 -0,1921 -0,1028  
 b43[1] 0,0900 0,0354 0,0208 0,1598  
 b43[2] 0,0046 0,0241 -0,0429 0,0514 No 

 

Historical serial sample values for parameters estimation of Bernoulli Mixture Bayesian Regression 

show a stable random pattern in a fixed domain. The historical sample series of the first 8 posterior 

estimation values (p1, p2, b0[1], b0[2], b11[1], b11[2], b12[1], b12[2]) indicating the fulfillment of irreducible, 

aperiodic and recurrent properties as their convergence has been reached.  
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 (a) p1 (b) p2   
  

 
 (c) b0[1] (d) b0[2]   
  

 
 (e) b11[1] (f) b11[2]   
  

 
 (g) b12[1] (h) b12[2]  
   

Figure 5. Serial Plot of the first 14 posterior estimation values (p1, p2, b0[1], b0[2], b11[1], 

b11[2], b12[1], b12[2]) with 10.000 Iterations thin 30 for Bernoulli Mixture Bayesian 

Regression 
4.4. Classification Comparison 

The best combination of significant parameters for Bayesian Bernoulli mixture regression model and 

for Bayesian binary logistic regression model are compared to see which model can be more 

representative to explain the acceptance of the Bidikmisi data. The comparison is done using their 

classification values. The bigger classification percentage, the better the model explain the acceptance. 

Their classification results are tabled in Table 4. It can be seen that Bayesian Bernoulli mixture 

regression model with 71.70 percents shows more accurate than Bayesian binary logistic regression, 

which is just only able to accurately classify as big as 56.50 percents. 

Tabel 4. Accepted Qualification Percentage 

Model 
% 

Classification 

Bayesian binary logistic regression 56.50 

Bayesian Bernoulli mixture regression 71.70 

 

5. Conclusion 

The new development approach, a Bayesian Bernoulli mixture regression model coupled with MCMC 

approach, has successfully worked to classify the Bidikmisi acceptance. This new development 

approach and the Bayesian binary logistic regression model can reach their posterior parameters 

estimation convergence perfectly. This proposed Bayesian Bernoulli mixture regression model coupled 

with MCMC approach can give a higher percentage of acceptance classification accuracy than the 

Bayesian binary logistic regression model. This model is more representative for explaining the 

classification of Bidikmisi acceptance.   
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