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Abstract. The assessment and comparison of income inequality and poverty can be supported
by estimating probability distribution of income. Income distributions which are typically
heavy tailed and positively skewed have been estimated both parametric and nonparametric
approach. In parametric approach, finite mixtures distributions have been usefully
implemented in the modelling of income distributions which has multimodal characteristic.
The Markov Chain Monte Carlo (MCMC) approach is one of estimation methods which has a
good performance in estimating parameter of Bayesian finite mixture model. The convergence
of the MCMC sampler to the posterior distribution is typically assessed using standard
diagnostics methods,.i.e., Gelman-Rubin method, Geweke method, Raftery-Lewis method and
Heidelberger-Welch method. Those methods can give different results to conclude MCMC
convergence condition. In this paper, a real sample income data from the Indonesian Family
Life Survey (IFLS) 2015 and BidikMisi 2015 are employed to demonstrate the performance of
diagnostics tools that assess convergence of the MCMC algorithm in estimating parameter of
Bayesian finite mixture models.

1. Introduction

Statistical modelling based on finite mixture distributions that also known as finite mixture modelling
is an int@®sting research field with the considerable range of applications. Finite mixture model
captures many specific properties of real data such as multimodality, skewness, kurtosis, and
unobserved heterogeneity [1]. It means th@Jmixture distribution can represent as data pattern in data-
driven analysis perspective [2]. Presently, finite mixture models are implemented in such varied areas
as biometrics, genetics, medicine, financ e and economics including income distribution modelling.

In parametric approach, there are many probability distributions alternatives which can be used to
estimate the income distribution model in such population. This approach is implemented as part of
the analyzing process of the income distribution in a region related to the economic and poverty
imbalances which occur in that population. The mixture distribution is relatively flexible for
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approaching the distribution of income with different sub-populations. Each sub-populations may
reflect groups with economic homogeneity [3]. Finite mixture models provide a flexible extension of
classical statistical models, though the inference for these models poses particular challenge on
computational aspects [1].

Bayesian inference approach can overcome that computational problem, since it allows the
complicated structure of a mixture model to be decomposed into a set of simpler structures [4].
However, their analytical parameter of posterior distribution which can contain large integral
dimension equation is usually difficult to be found. Thus a simulation method called Markov Chain
Monte Carlo (MCMC) is suggested to solve numerically this problem. MCMC approach involves the
simulation process which is performed iteratively Markov chains using Monte Carlo method to obtain
convergence condition on posterior distribution. Implementation of MCMC in Bayesian analysis
requires a proper sampling algorithm to obtain a sample of a distribution. Gibbs sampler is one of
algorithms that is frequently used as generator of random variables in MCMC |[5].

Although MCMC algorithms allow an advantageous computation, it can also encounter a
conceivably serious weakness that relates with convergence of parameter estimation process.
Therefore, in Bayesian finite mixture modelling, it should use standard diagnostics tools that verify the
convergence of estimated parameter in order #each the target posterior inference for parameters. The
assessment methods of convergence such as Gelman-Rubin method [6], Geweke method [7], Raftery-
Lewis method [8] and Heidelberger-Welch method [9] can produce diverse results about the
achievement of MCMC convergence condition.

2. BayesianfFnite Mixture Model
We explain finite mixture model in section 2.1 and Bayesian approach for finite mixture model is
described in section 2.2.

2.1. Finite Mixture Model

A random variable vector y which has discrete or continuous type is said to be derived from a finite
mixture distribution, if the probability density function g(y) has a mixture density form that applies to
ally,

W) =w fi(¥)+ W f (¥) (H
where f, (y) is pn‘albility density function for k=12, ....K . f, (y)is distribution function of k-th
mixture component and K is the number of mixture components. w,..... w, are weighting parameters
and vector w=(w,,...,w,) is weighting vector of mixture distribution. The value of W must fulfil
0 <w <1 and w +...+w, =1

In some cases of application, if it is assumed that all components of the finite mixture distribution
come from a probability distribution having parameters @ , then equation (1) can be redefined as

gylw. ) =w f(yl0)+. .. +w, f(ylO,) (2)
with 8=(8,.... .8,) [I]. Statistical model that implements the concept of finite mixture distribution in
the modeling is usually called the finite mixture model.

2.2. Bayesian Approach
Let y= { ¥io¥as yN} are uncategorized observatilﬁ from the mixture distribution that are randomly

selected. Let @=(0,.0,, ...0,) =(0,... 0.,w) denote all unknown parameters appearing in the
mixture model. By using Bayes theorem, the posterior probability distribution zr(@l y) is proportional
tnéle multiplication between the prior distribution of @, p(@) , and the mixture likelihood, f, (y | @) .

It can be represented mathematically as follows,
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r(01y)=2Lt'©)P(0)
r(y) (3)
o f, (yl@)p(@)

and the mixture likelihood function fL (y | @) takes the form,
f(yl@) l_lg v, 19) H[me y; 10, )J 4

After determining prior distribution, the Bayesian approach will perform parameter estimation by
integrating the posterior distribution. The integration process is approached by simulation procedure
which is commonly known as MCMC methoff) When Bayesian approach is implemented on finite
mixture modelling, parameter estimation result does not rely on asymptotic normality, and yields valid
inference in cases where regularity conditions are violated, such as small data sets and mixtures with
small component weights [ 10].

2.2.1. Gibbs Sampler. Advantage of the Gibbs sampler is that, in each step, random values only
consider to be gfherated from univariate conditional distributions. Based on /5], the algorithm can be
summarized by the following steps:

1. Set initial values ©" .

2. For t =1,2,...,T repeat the following steps :

(1) 9:9” 1)
(ii) for j=1,2,...,d update @, from @, ~7(O,10,,,y)
7(®,10,,,y) is full conditional posterior distribution with ©,, =(0,... ©,,.0 ... 9,) .

(iii) @ =© andsave itas the gencrated set of values at t+ 1 iterations of the algorithm.
Therefore, by giving the chain @'’ | algorithm generates the new parameter values as follows

@
@Ifr] from ﬂ((;)l |®3“_”,®3”_” . ,G)ﬂ.”_” ,)')
@21’:] from ﬂ-(@z IG)IUJ ’gj{r—ll - ’84”41 ’y)

0," from 7(0,10,",0,".... .0, B.@j‘,“'”.... 0,y

0, from 7(0,10,".0," ...0, "y
The generating process, 7(0,10,.y)=7(0,10,".0,",...0,,".0,“"..0, " y). is quit

simple and it has proportional relation as 7(®, 10, ;,y) o« 7(@ly), where all the variables except O,

have constant values.

3. Markov Chain Monte Carlo Convergence Diagnostics

3.1. Gelman-Rubin
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The Gelman-Rubin method approach is done by defining several Markov Chains with different initial
values and comparing the variance between some Markov Chains with the variance in each Markov
Chain. If there is m Markov Chains which are mutually independent and if each markov chain has
been taken a number of T iterations, f=1,2,...,T, then MCMC convergence can be monitored
through estimation of potential scale reduction factor (PSRF) formulated as follows

V(0)

avg

R=

(5)

— 1 . . . 1< 5 . 5 1 < —\2
avg +— B is the variance estimate of © , avg=—)» s5” with s =——>» (0, -0,
gt §=—2 S =7 Z[ ,—6,)

i=l

where V(0) =

2(6,—3)' with E:iza If the PSRF value is close to 1, then every m Markov

i=l

and B=

m—1 ()

Chains converge to the target distribution. Conversely, if the value of PSRF is large, it is necessary to
take an extended stage of simulation that allows to reduce the value of ‘l:’(®) or to increase the value
of avg such that m Markov Chains converge to target distribution [11]. The Gelman-Rubin method for

one parameter is further developed by Brooks and Gelman for vector of @ and also known as the
Brooks-Gelman-Rubin (BGR) method [12].

3.2. Geweke

Suppose that ®, is a parameter of interest and ®,", ...,0"" are related simulated values with
subsamples A and B as the beginning and the end respectively. The diagnostic test computes
o' -0"
L=——"— (6)
O @ -an
where @' and ®" are means of subsamples and o _, _, is an estimated standard deviation of

{@Iﬂ @L]
difference ®° —®". Considering Z asymptotically follows the standardized normal distribution,
Z ~ N(0,1) ,if |Z| > 2 then the chain is not convergent [5].

3.3. Rafiery-Lew§l)
Suppose N, as the minimum number of iterations that is needed to achieve the required estimation

min

precision for some function of parameter @ and the quantile of interest is g and s, then NV__ is given by

min

N, ={F '[‘_“} 9d-9 (7)
e 2 I

where F(-) is the standard normal cumulative distribution function. The value of dependence factors,
I=N/N can be used to indicate convergence condition of the chain. If the value is greater than 5,

then it implies a convergence failure.

min *

3.4. Heidelberger-Welch
The Heidelberger and Welch method which is applied for the analysis of single chains from
(B3 variate observations is developed based on Brownian bridge theory [9]. Suppose m is the j-th
iterate in the chain, f(0) is the spectral density of the chain evaluated at zero and [nr] is the greatest
integer less than or equal to nr. Let

Sy~ 0]

- . 0s¢<] (8)
(nf() "

n
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where §,=0 , §, =Z;=I®‘-” k=1, QZ(Z:,.QU]) n', then B, ={B, (1), 0<r<I} converges in

distribution to the Brownian bridge as n — o0 .

4. Application

In this section, real sample income data which determines from the Indonesian Family Life Survey
(IFLS) 2015 and BidikMisi 2015 are employed to demonstrate the performance of diagnostics tools
that assess convergence of the MCMC algorithm in finite mixture models. Computation of MCMC
convergence with those diagnostic methods has been integrated in BUGS software : WinBUGS [13] or
OpenBUGS [14]. Whereas computing through R software is done with Convergence Diagnostic and
Output Analysis (CODA) package [15].

4.1. Indonesian Family Life Survey (IFLS) 2015.

Source of household income response data is processed based on survey data from Indonesian Family
Life Survey (IFLS) 2015 which examines the life of household in Indonesia [16]. In this paper, we use
household income data in Province of Daerah Istimewa Yogyakarta (DIY) with a sample of 690
households in five districts / cities: Kulonprogo Regency, Bantul Regency, Gunungkidul Regency,
Sleman Regency and Yogyakarta City. The histogram kernel plot of the distribution is shown in
Figure 1 below

o
S o
-

300

200

100

0 200000000 400000000 6000000+

mcome
Figure 1 Kernel Histogram Plot Distribution of Household Income Data in
Province of DIY.

Based on figure 1, it can be shown that income distribution indicates a multimodal characteristic
that can be approached by finite mixture distribution. Using Mathematica 11 software, we preliminary
presume that income distribution can be modelled by mixture model with three components of the two
parameter Gamma distribution, Gamma(e,f2) which can be called as three components Gamma
mixture,

]

gyl w,9)=Zw‘f(yI9‘_)
k=l

where f(y10,)=f(yla,.B)=p5" (T(a,)) Lyale A s two parameter Gamma distribution.
In that model, there are three parameters «,f,w which have to be estimated. Based on [17], the
prior distributions which are implemented for each of parameters are
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p(w) o Dirichlet(:9)
pla,) = Exp(0)

p(pB,) oc InverseGamma(c, , 3,)

In our research, we focus on estimation convergence of weighting parameters w,, w, w; . In the first
process, we generated 8,000 iterations which produced indicator values of CODA diagnostic that
indicated some convergent problems. It was necessary to take an extended stage of iterations as stated
on [11]. Therefore we performed further simulations.i.e.,100,000 iterations so that the effect of raised
number iterations could be verified on MCMC convergence. The results of CODA diagnostic are
described on table 1 with case 1 for 8,000 iterations and case 2 for 100,000 iterations.

Table 1. Indicator values of CODA diagnostics for weighting parameters w, ,w, w, .

Diagnostics 8 Wi Wa w3

case 1 case 2 case 1 case 2 case | case 2
BGR 5.74 1.01 305 1.01 1.43 1.04
Geweke -4.555 -1.260 5.653 1.56 0.116 -0.249
Raftery-Lewis 41.20 60.3 9.37 17.8 22.20 50.8
Heidelberger- failed failed failed failed passed passed
Welch

Referring to table 1, for BGR and Geweke methods, the increasing number of iterations can
improve the convergence of MCMC. However, it does not occur for Raftery-Lewis and Heidelberger-
Welch methods. In all cases and all parameters, Raftery-Lewis method gives unconvergent indicator
values. If we regard from three diagnostics methods: BGR, Geweke and Heidelberger-Welch, it seems
that only estimation parameter of w; which tends to converge. This problem is caused by a
computation process that is trapped on one of the mixture components and the process cannot get out
from that mixture component. Historical simulations with two different chains on figure 1 present that
estimation process of w, tends a convergent condition which does not be achieved by estimation

processes of w,,w, .

a
= w
-
=]
o T T T T
0 25000 50000 TE000
iteration
(a) w,
o
a w
Zol
ot
o
0 25000 50000 75000
teration
(b) w,
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(3]
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0 25000 50000 75000
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(c)wy

Figure 1. Historical simulation of w,,w;, w;, on 100,000 iterations.

Those convergence problems can happen, because there is not restriction condition on mean of
cach component Gamma mixture, i.e., g <g, < i, which can assure identifiability of component
mixture. So re-parameterization of Gamma mixture model that implements restriction condition is
done through BUGS program which is given on Appendix. The results of CODA diagnostics after re-
parameterization are shown on table 2.

Table 2. Indicator values of CODA diagnostics for weighting parameters w, ,w, w,

Diagnostics a Wi Wa W3

case 1 case 2 case 1 case 2 case 1 case 2
BGR 1.02 1.00 1.00 1.01 1.02 1.00
Geweke 0.9699 07212 -0.5645 .5383 0.7292 0.2442
Heidelberger- passed passed passed passed passed passed
Welch

Table 2 shows that indicator values for BGR, Geweke and Heidelberger-Welch methods indicate
the Markov chain reaches convergence condition for both cases. However, the convergence conditions
are not fulfilled by the Raftery-Lewis method.

Other possibly solution to avoid a trapped estimation process on one of the mixture components is
to reduce the number of mixture components [10]. So, we simplified the mixture model from three
component mixtures to two component mixtures. The CODA results for two component Gamma
mixture are exposed on table 3.

Table 3. Indicator values of CODA for two components Gamma mixtures.

Diagnostics W1 Wa

case 1 case 2 case 1 case 2
BGR 1.03 1 1.03 1
Geweke 0.764 1.115 0.764 -1.115
Raftery-Lewis 16.8 26.5 9.78 18.5
Heidelberger- passed passed passed passed
Welch
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In regarding to table 3, it can be seen that BGR, Geweke and Heidelberger-Welch methods give
similar conclusion about convergence parameters achieved. Nevertheless, Raftery-Lewis method still
gives an opposite convergence result. For this reason, it has to be required further exploration which
concerns about implementation of Raftery-Lewis on finite mixture models.

4.2. BidikMisi 2015

Source of income response data is processed based on survey data from BidikMisi in 2015. In this
paper, we used income data in Province of Daerah Istimewa Yogyakarta (DIY) with a sample of 1,149
households. In this paper the income distribution is modelled by mixture model with three components

of Normal distribution N(u,07),

g(ylw.,0) :iwi_f(ylﬁk)
k=1

[E ;.-']3

2

where f(y10,)=f(ylg, .crf)=(2fr0") "¢ 7= is Normal distribution. The prior distribution for
weighting parameter is p(w) oc Dirichlet() . Similar simulations as IFLS data are conducted for
assessment process of MCMC convergence. The results of CODA diagnostic are presented on table 4.

Table 4. Indicator values of CODA diagnostics for weighting parameters w, ,w, w, of Normal

mixture.
Diagnostics | Wi W2 W3

case | case 2 case 1 case 2 case | case 2
BGR 1.04 1 1.01 1 1.07 1
Geweke -0.8569 -0.6666 0.8146 04141 1.0277 0.0883
Raftery-Lewis 12.00 233 7.93 12.0 555 99.0
Heidelberger- failed passed failed passed passed passed
Welch

Indicator values which are shown on table 4 give an affirmation that the increasing number of
iterations can provide better indicator values of MCMC convergence. Even though, that condition only
happen on BGR, Geweke and Heidelberger-Welch methods, while indicator value of convergence
base on Raftery-Lewis method has not changed.

Historical simulations with two different chains on figure 2 describe that estimation process of
w,,w,,w; tends a convergent condition.

o
T
=]
(=18
=]
T T T T
o 25000 50000 75000
iteration
(@) w,
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Figure 2. Historical simulation of w,,w, w, on 100,000 iterations for
Normal mixture model.

5. Conclusion

The increasing number of iterations can provide a better indicator value of MCMC convergence on
diagnostics tools such as Gelman-Rubin method, Geweke method and Heidelberger-Welch method.
Nonetheless indicator value of Raftery-Lewis method is not affected by the increment of iteration.
Therefore, further researches that concern on Raftery-Lewis method for assessment convergence of
Bayesian finite mixture modelling are required.
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Appendix
model{
for(iin 1 : N ) {
yli] ~ dgamma(alpha, beta[i])
beta[i] <- alpha/mu[T][i]]
T[] ~ deat(w[])
}
w] 1:3] ~ ddirich(alp[])
theta ~ dunif(0.0, 10000000)
theta2 ~ dunif(0.0,10000000)
mu(3] <- mu[2] + theta2
mu(2] <- mu|[ 1] + theta
mu[ 1] <- 1/lamb
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lamb ~ dgamma(1.5, 1)
alpha ~ dexp(1)
}
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