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ABSTRACT: 
Globally, the leading cause of death from cancer in women is infection with the human papillomavirus (HPV). 

This calls for imperative actions to explore anticancer drugs against this threatening viral infection, in which 

case, natural ingredients are presumed to be a promising source. Several studies show that plant-origin 

compounds such as allicin, apigenin, capsaicin, cyanidin, fisetin, genistein, laricitrin, naringenin, piperine, and 

syringetin have demonstrated therapeutic effects against several cancer types. In this study, the interaction 

mechanism of these compounds with HPV-18 E6 oncoprotein, that is known to downregulate tumor suppressor 

p53, was predicted using an in silico approach. Molecular docking simulations of natural ligands and E6 protein 

were performe, followed by chemical interaction analysis and 3D molecular visualization. Results indicated that 

fisetin is the best natural inhibitor as it has the lowest binding energy. It is highly recommended that the results 

of this study be used as a reference in designing anticancer drugs in vitro and in vivo. 
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INTRODUCTION: 
More than a hundred types of cancer attack humans, and 

this has lead to it being placed as the second-leading 

cause of death worldwide. In 2015, cancer has resulted 

in 8.8 million mortalities and is expected to rise to 10 

million in 2020
1
. Some scientists believe that most 

cancers (90-95%) are caused by mutations that are 

triggered by environmental and lifestyle factors, and the 

rest (5-10%) are due to genetic inheritance. Globally, 

approximately 18% of cancer deaths are attributed to 
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infectious agents
2
. Inhibition of the activity of the major 

transcription factors appears to be a very potent 

approach to cancer therapy
3,4

. 
 

Human papillomavirus (HPV), a sexually transmitted 

virus from the papillomavirus family, is a causative 

agent of several types of cancer including cervical, head 

and neck, vaginal, penile, and anal cancer
5
. Over 200 

subtypes of HPV have been identified and characterized 

over the years. Based on its oncogenic potential, HPV is 

classified into high-risk and low-risk groups
6,7

. High-

risk types such as HPV-18 and -16 are responsible for 

causing anogenital cancer which account for 15.7% and 

62.6% of cervical cancers, respectively, whereas low-

risk HPV-6 and -11 induce only genital warts
8,9

. Thus, 

HPV 16 and 18 became the main targets in the design of 

anticancer drugs.  
 

HPV is a double-stranded virus that invades the 

epithelium
10

. The HPV genome consists of three main 

regions. First, the long control region (LCR) has the 

function of regulating DNA replication by controlling 

the transcription of viral genes. Th early region (E) is 

responsible for encoding non-structural proteins 

involved in viral replication (E1,E2,E4) and oncogenesis 

(E5,E6,E7). Late regions are known to encode structural 

proteins (L1 and L2) involved in viral capsid formation, 

transmission, and spread of virions
11-13

.  
 

E6 is one of the oncoproteins expressed in HPV-16 and -

18, which contributes to malignant transformation, 

immortality, and carcinogenicity
2
. This oncoprotein 

targets p53, which plays an important role as a tumor 

suppressor and checkpoint regulator in the cell cycle
14

. 

E6 forms a heterotrimeric complex with p53 and E6-

associated protein (E6AP) via the ubiquitination 

pathway which leads to p53 degradation
15

. Decreased 

p53 content causes it to be unable to repair DNA 

damage resulting in malignancy
2
. 

 

For more than three decades, HPV has been identified as 

the causative agent for cervical cancer, but finding 

effective therapies to fight HPV infection remains to be 

established
16

. Developing drugs for the prevention and 

treatment of cancer based on natural compounds of plant 

origin has emerged as a promising approach in recent 

years
17

.  
 

Allicin is reported to suppress the viability of cervical 

cancer cells depending on the time and dose of 

therapy
18

. Apigenin arrests the cycle of human cervical 

cancer cells (HeLa) in the G1 phase and induces 

apoptosis via DNA fragmentation
19

. Capsaicin exhibits 

potent anticancer properties on various types of cancer 

cells, and its combination with radiotherapy or 

conventional chemotherapy improves sensitivity, 

reduces side effects, and increases patient tolerance of 

therapy
20

. Cyanidin-3-O-β-glucopyranoside has an anti-

proliferative effect by activating caspase-3 and inducing 

p21 expression on human prostate cancer cells DU145 

and LnCap
21

. Fisetin which is found in many fruits and 

vegetables, induces apoptosis and interferes with the 

mitochondrial membrane potential of HeLa cell 

lines
22,23

. Genistein triggers apoptosis in HeLa cells 

through increased caspase-9 and caspase-3 activity
24

. 

Laricitrin can reverse lung cancer cells-induced 

dendritic cell paralysis, by inhibiting STAT3 (signal 

transducer and activator of transcription 3) 

phosphorylation
25

. Naringenin, a flavanone derivative in 

citrus fruits, has been shown to cause cell death and 

inhibit the cell cycle in the G0/G1 (24 h) and S (48 h) 

phases in a 3D spheroid culture of cervical cancer cells, 

as well as to increase the therapeutic effect of cervical 

cancer by cisplatin
26,27

. Atriplex halimus containing 

syringetin is also reported to have selective cytotoxicity 

against breast (MCF-7) and prostate (PC3) cancer 

cells
28

. 

 

Research in the field of drug design is very time 

consuming and expensive, and the in silico approach can 

be used as a preliminary study on the potency of natural 

compounds as drug candidates
29

. Computational drug 

design simulations can predict the molecular 

mechanisms of candidate compounds through several 

analyzes based on specific research objectives, such as 

prediction of biological pathways, binding energies, 

types of interactions, and molecular dynamics
30

. This 

study predicted the potential molecular mechanisms of 

ten different natural compounds from several plant 

sources as antiviral candidates for HPV-18 via an in 

silico approach.  

 

MATERIALS AND METHODS: 
Hardware and Softwares: 

The study was conducted on Dell Latitude E7240 with 

Intel
®
 Core™ i7-4600U and 2.10 GHz processor, 16 GB 

RAM, and 250 GB hard disk drive. The bioinformatics 

softwares used were PyRx 0.8 and PyMol 2.0. Online 

resources such as PubChem 

(https://pubchem.ncbi.nlm.nih.gov/), UniProt 

(https://www.uniprot.org/), RCSB Protein Data Bank 

(PDB) (https://www.rcsb.org/), SwissADME 

(http://www.swissadme.ch), and Protein Plus 

(https://proteins.plus/) were also utilized in this study.  
 

Compounds and Protein Preparation: 

This study involved ten natural compounds namely 

allicin, apigenin, capsaicin, cyanidin, fisetin, genistein, 

laricitrin, naringenin, piperine, and syringetin. Their 

chemical 3D structures were obtained from PubChem 

(https://pubchem.ncbi.nlm.nih.gov/). RCSB PDB 

(https://www.rcsb.org/) was used to reveal the HPV-18 

E6 protein target samples.  
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Drug-Likeness Analysis: 
Drug-likeness analysis was performed to qualitatively 

assess the possibility of a molecule becoming an oral 

drug based on its bioavailability. It was done on the 

SwissADME (http://www.swissadme.ch) and referred to 

Lipinski’s rule of five
31,32

.  
 

Molecular Docking Study: 

The compounds that met Lipinski’s rule were analyzed 

for their binding energy with HPV-18 E6 protein by 

using docking analysis. A blind docking type was 

performed using the Vina program in PyRx 0.8
33

. 
 

Protein-Ligand Interactions: 

This analysis identified the interaction position and the 

type of chemical bond formed when a potential 

compound binds to the E6 protein target. The Protein 

Plus web server (https://proteins.plus/) was involved in 

this analysis
34

.  

 

Molecular Visualization: 

PyMol 2.0 was employed for visualization of 

representative color and structural selection
35

. 

 

RESULTS AND DISCUSSION: 
The Potency of Natural Compounds as Drug 

Candidates: 

Ten samples of chemical compounds namely allicin, 

apigenin, capsaicin, cyanidin, fisetin, genistein, 

laricitrin, naringenin, piperine, and syringetin were 

obtained from the PubChem database. The sample data 

consist of the 3-dimensional structure of the target 

compound in structural data format (.sdf) which was 

then converted into a protein data bank (.pdb) format 

that can be used for subsequent analysis. The selection 

of the target compound structure is shown in the 

representative form and colored based on the chemical 

building blocks in the PyMol 2.0 software (Figure1). 

 

 
 

 
Figure 1. Chemical structure of natural compounds. 

 

The drug-ability of these chemical compounds was then 

predicted on the SwissADME server 

(http://www.swissadme.ch) based on Lipinski’s rule of 

five. The rule of five (Ro5) is defined as a combination 

of parameters capable of identifying potential drug 

candidates that may cause problems with absorption and 

permeability
36

. Lipinski’s rule states that oral drugs must 

not have more than one violation of the five criteria that 

consist of molecular weight ≤ 500 Dalton, hydrogen 

bond donors ≤ 5, hydrogen bond acceptors ≤ 10, 

lipophilicity ≤ 5, and molar refractivity between 40-

130
37,38

. The prediction results show that all the 

chemical compounds are drug-like (Table 1). These 

compounds can proceed to the next stage of analysis, i.e. 

the determination of the binding energy to the target 

protein.  

 
 

Table 1. Prediction results of drug-like molecules based on 

Lipinski’s rule. 

Compounds Lipinski’s Rule of Five 

MW 

(Da) 

HBD HBA Log P MR 

Allicin  162.27 0 1 1.18 45.88 

Apigenin 270.24 3 5 0.52 73.99 

Capsaicin 305.41 2 3 2.69 90.52 

Cyanidin 287.24 5 6 0.32 76.17 

Fisetin 286.24 4 6 -0.03 76.01 

Genistein 270.24 3 5 0.52 73.99 

Laricitrin 332.26 5 8 -0.83 84.53 

Naringenin 272.25 3 5 0.71 71.57 

Piperine 285.340 0 3 2.39 85.47 

Syringetin 346.29 4 8 -0.59 89.00 

Note. MW: Molecular Weight; HBD: Hydrogen Bond Donors; HBA: 
Hydrogen Bond Acceptors; Log P: Lipophilicity; MR: Molar 

Refractivity. 
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Interaction Study of Natural Ligands with HPV-18 

E6 via Docking Analysis: 

Molecular docking is a valuable computational 

modeling technique for estimating the interaction of 

ligand-receptor macromolecules and determining the 

binding energies generated
39,40

. The protein was 

prepared using PyMol 2.0 software to eliminate the 

water molecules
41

. In this study, the blind docking 

method was employed due to the fact that the functional 

domain of the target receptor was unknown
42

. 

 

Chemical compounds consisting of allicin, apigenin, 

capsaicin, cyanidin, fisetin, genistein, laricitrin, 

naringenin, piperine, and syringetin were used as ligands 

and E6 (2I04) as the target. Docking simulations for 

them were carried out in PyRx 0.8 software with a grid 

docking center x: -6.8275; y: -10.748; z:11.2834 and 

dimensions (Å) x: 47.2043; y: 54.2914; z: 44.6647. 

Molecular visualization of docking results was 

conducted by structural selection and coloring using 

PyMol 2.0 software (Figure 2).  

 

 
Figure 2. Molecular visualization of natural compound ligands 

that bind to the HPV-18 E6 receptor. The E6 protein is shown 

with a transparent surface and a violet cartoon structure 

 

Since all observed natural compounds interact with E6 

protein in different conformations and binding energies, 

the molecular complex with the lowest binding energy 

was selected for analysis. Molecular docking results 

showed that of all the compounds tested, fisetin had the 

lowest binding energy of -8.1 kcal/mol to HPV-18 E6. 

Nine other natural ligands i.e. apigenin, naringenin, 

syringetin, laricitrin, piperine, cyanidin, genistein, 

capsaicin, and allicin were observed to bind to the E6 

receptor with a binding energy range of -7.4 to -3.4 

kcal/mol (Table 2). In line with the objectives of this 

study, the tested compounds were predicted to inhibit E6 

activity. The ligand with the lowest binding energy 

value affected the biological activity of a protein target. 

The lowest binding energy allowed the formation of 

molecular complexes under constant temperature and 

pressure
43

. The binding energy value is also influenced 

by the presence of amino acid residues in the binding 

region of the target protein and the chemical interaction 

type
33

 so that fisetin was further evaluated for its binding 

location and the type of chemical interactions formed.  

 
Table 2. The result of molecular docking simulation 

Compound ID Protein  

Target 

Binding Energy 

(kcal/mol) 

Allicin  65036 E6 -3.4 

Apigenin 5280443 E6 -7.4 

Capsaicin 1548943 E6 -5.9 

Cyanidin 128861 E6 -6.6 

Fisetin 5281614 E6 -8.1 

Genistein 5280961 E6 -6.5 

Laricitrin 5282154 E6 -6.8 

Naringenin 932 E6 -7.3 

Piperine 638024 E6 -6.8 

Syringetin 5281953 E6 -6.9 

 

Evaluation of bond type and molecular interaction 

position of the natural compound with the lowest 

binding energy was carried out on the Protein Plus 

webserver. Fisetin interacts with the HPV-18 E6 domain 

through hydrophobic bonds at Tyr398B, Phe396B, 

Phe396A, Asn374B, and Ser394A, as well as hydrogen 

bonds at the Val397B, Phe396B, Ser394A, Ser375B, 

Phe396A, and Tyr398B positions (Figure 3). 

 

 
Figure 3. Chemical interaction between Fisetin and HPV-18 E6 

binding domain 

 

Chemical interactions that occur between a ligand and a 

protein domain have an important role in influencing the 

binding energy. The types of chemical interactions that 

can be formed are hydrophobic and hydrogen bonds
33

. 

This interaction is classified as a weak bond that can 

encourage the performance of the biological activity of 

certain proteins
44

. Chemical bond interactions and the 

position of binding amino acid residues are very 

important factors in determining the probability of drug 

molecules through computer-based studies
30

. Thus, 

fisetin has a good potential as a candidate for an 

antiviral and anticancer drug because it can bind to the 

HPV-18 E6 protein with the lowest binding energy and 

interact with hydrogen and hydrophobic bonds.  
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CONCLUSION: 
HPV-18 antiviral molecular activities of several natural 

compounds were examined regarding their inhibitory 

mechanisms against E6 protein, and fisetin was found to 

be the best candidate. We suggest that the in silico 

simulation results from this study be used as a reference 

for drug development through in vitro and in vivo 

studies.  
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