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Abstract. Localizing objects from an image has been a vital part in autonomous driving since object localization 

performance directly correlate with the safety of the passenger. Robust and accurate object localization that can adapt 

to any driving environment has always been improved to ensure a safe and reliable system. In this work, we propose 

CBNet, a two-stage instance segmentation network for an autonomous driving environment. The network leverages a 

powerful transformer network as the feature extractor to improve performance. In addition, our proposed network 

utilizes a cascade design for both the object proposal network and the region-of-interests classifier. The cascade 

design addresses the issue of degrading detections over a high detection threshold. Moreover, we implement shape 

and edge-aware losses for the segmentation mask and end-to-end knowledge distillation strategy during training to 

improve the robustness of the network in extreme conditions. Our proposed network achieves 6.5 AP and 5.7 mIoU 

improvement from the prior methods in Cityscapes driving dataset. Furthermore, we evaluate our network in Foggy 

Cityscapes dataset to ensure the robustness of our network in extreme conditions. CBNet is able to improve the 

performance of prior methods by 7.7 AP and 6.7 mIoU in Foggy Cityscapes dataset. Keywords: Object detection, 

Deep learning, Edge aware, Autonomous driving  

   

Abstrak. Melokalisasi objek dari gambar telah menjadi bagian penting dalam berkendara otonom karena kinerja 

lokalisasi objek berkorelasi langsung dengan keselamatan penumpang. Lokalisasi objek yang kuat dan akurat yang 

dapat beradaptasi dengan lingkungan berkendara apa pun selalu ditingkatkan untuk memastikan sistem yang aman 

dan andal. Dalam karya ini, kami mengusulkan CBNet, jaringan segmentasi instans dua tahap untuk lingkungan 

berkendara otonom. Jaringan tersebut memanfaatkan jaringan transformator yang kuat sebagai ekstraktor fitur untuk 

meningkatkan kinerja. Selain itu, jaringan yang kami usulkan menggunakan desain kaskade untuk jaringan proposal 

objek dan pengklasifikasi wilayah minat. Desain kaskade mengatasi masalah deteksi yang menurun di atas ambang 

deteksi yang tinggi. Selain itu, kami menerapkan kerugian bentuk dan tepi untuk masker segmentasi dan strategi 

penyulingan pengetahuan ujung ke ujung selama pelatihan untuk meningkatkan ketahanan jaringan dalam kondisi 

ekstrem. Jaringan yang kami usulkan mencapai peningkatan 6,5 AP dan 5,7 mIoU dari metode sebelumnya dalam 

dataset berkendara Cityscapes. Lebih jauh, kami mengevaluasi jaringan kami dalam dataset Foggy Cityscapes untuk 

memastikan ketahanan jaringan kami dalam kondisi ekstrem. CBNet mampu meningkatkan kinerja metode sebelumnya 

sebesar 7,7 AP dan 6,7 mIoU dalam dataset Foggy Cityscapes.  

Kata kunci: Deteksi objek, Pembelajaran mendalam, Sadar tepi, Mengemudi otonom  

   
  

INTRODUCTION  
  

Autonomous driving vehicles rely heavily on 

object localization to navigate through the road. The safety 

and robustness of an autonomous driving system can be 

determined by the accuracy of the localization algorithm 

and its robustness in any outdoor situation. Different 

autonomous driving systems utilize a combination of 

different modalities to locate objects and perceive their 

surrounding, but a camera-based system is autonomous 

driving application, extreme lighting and weather 

conditions can produce noises and obstruct object 

detection. Therefore, it is compulsory to develop a 
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localization algorithm that is capable of addressing these 

extreme conditions.  

In recent years, deep-learning-based object 

detection algorithms have become the preferred method 

due to their exceptional performance. The early object 

detection algorithm employs a sliding window to generate 

millions of candidate bounding boxes in every possible 

size and location on an image [2]. Afterward, all of the 

bounding boxes will be classified using a classifier [3]. 

However, classifying a large number of candidate 

bounding boxes is time-consuming and inefficient. Thus, 

subsequent researches are dedicated to develop an object 

proposal algorithm that can reduce the number of 

candidate bounding boxes into a reasonable number [2]. 

The algorithm aimed at reducing the number of candidate 

bounding boxes needs to have a high-recall rate to not miss 

any object of interest. Needless to say, the more candidate 

bounding boxes passed to the classification network, the 

more accurate the overall detection quality will be. 

Therefore, object proposal algorithms have to consider the 

trade-off between high detection quality and detection 

speed. We can see it in Figure 1.  

  

  

Figure 1. Our proposed network utilizes two-stage approach.  

Mix-Vision Transformer (MiT) is utilized as the feature 

extractor, whereas the region proposal network utilizes 

centerpoint detection to generate anchor-free proposals that 

will be classified by the region of interest (RoI) heads.  

  

Prior works utilize focal loss (FL) [4], feature 

pyramid network (FPN) [5], [6], You Only Look Once 

(YOLO) [7], Single-shot Detector (SSD) [8], and visual 

cues-based objectness evidences [9], [10], [11] to obtain 

high quality candidate bounding boxes. FL, FPN, YOLO, 

and SSD utilize CNN's powerful representation ability to 

extract features from an image. These methods are also 

known as the top-down classification approach. 

Nevertheless, the top-down approach needs a large 

amount of training data and tends to generalize poorly on 

unseen object [9]. In contrast, objectness evidences 

method measures objectness based on low-level visual 

cues such as saliency [9], superpixels straddling [10], and 

edge density [11]. These methods are also known as the 

bottom-up approach. The bottom-up approach assumes 

that all objects of interest share common visual properties 

that distinguish them from the background.  

Consequently, these rule-based bottom-up algorithms can 

distinguish object boundaries with less training data and 

generalize better than the top-down approach. However, 

prior bottom-up approaches do not benefit from the 

abundance of data since they cannot learn new features as 

a deep-learning model does. Additionally, our study has 

found that edge density provides the best time-quality 

ratio among other bottom-up approaches.  

In accordance with the above observation, we propose 

an shape and edge-aware instance segmentation algorithm 

that incorporates additional training strategies, such as 

shape-aware, edge-aware losses, and end-to-end 

knowledge distillation strategy. Our proposed network 

leverages the powerful transformer-based feature 

extraction as the backbone followed Neural Architecture 

Search FPN (NAS-FPN) [6] as the adapter for the 

subsequent cascaded region proposal network. The 

detection head consists of cascaded classification 

networks with two kinds of outputs, one for producing 

bounding boxes and the other to produce segmentation 

maps. The network will be tested in the Foggy Cityscapes 

dataset to measure its robustness in extreme weather 

conditions [12]. Our experiments show that the proposed 

network is able to consistently achieve state-of-the-art 

performance in both normal and extreme weather 

conditions. Lastly, the contribution of this work can be 

summarized in the following points: (a) This work 

almost irreplaceable [1]. In camera-based systems for an  
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proposed a robust object detection algorithm with stateof-

the-art performance in autonomous driving vehicles. Our 

proposed network is tested in various weather conditions 

and is able to maintain its accuracy despite the challenging 

visual conditions. (b) The proposed network adopts a 

powerful but lightweight transformer backbone for the 

feature extractor. Additionally, using the NASFPN, we 

adapt the output of the transformer such that its features 

can be used by the subsequent cascade object proposals 

network and detection heads. (c) The proposed network 

utilizes a novel shape and edge-aware region proposal 

network and end-to-end knowledge distillation learning 

strategy that can provide additional contexts during 

training. The edge prediction is generated alongside the 

segmentation mask to ensure the algorithm can run 

efficiently. (d) A high-resolution mask that helps the 

network learn fine-grained features is incorporated during 

training, specifically in dense regions with many objects. 

This region-enhanced detection strategy can guide the 

network to focus on the most salient parts of the image.  

  

METHODOLOGY  
  

The proposed network architecture is illustrated in 

Figure 1. Our proposed approach can be categorized as 

two-stage object detection with a cascaded region of 

interest (RoI) heads. The transformer and FPN backbone 

acts as the features extractor and pass these features to the 

RPN and RoI heads. Then, the RPN generates the initial 

class-agnostic bounding boxes as proposals to the RoI 

heads. Afterward, the RoI heads determine which classes 

each proposal belongs to. Meanwhile, in the last stage of 

the RoI head, the instance segmentation head will generate 

the segmentation masks to refine the bounding box 

detection further. Lastly, we will explain each component 

of the proposed network in detail in the subsequent section.   

  

A.  Transformer Backbone  

The proposed backbone and feature extractor is 

inspired by Mix-Vision Transformer (MiT) network [13]. 

There are three main improvements we made in the MiT 

architecture. First of all, we substitute the activation 

function to Mish [14]. Mish is more robust than the 

standard ReLU because it can retain small gradient for 

negative inputs. Secondly, we integrate neural architecture 

search feature pyramid network (NAS-FPN) [6] to adapt 

its output for the detection heads. Since MiT was 

originally intended for a semantic segmentation network, 

NAS-FPN is needed to adapt the outputs of the 

transformer blocks and pass them into the detection heads. 

In the NAS-FPN, the output height and width of each 

transformer block are interpolated to ! 𝑎𝑛𝑑 #,  

 " " 

respectively. Afterward, each of those outputs is passed 

into 2D convolution layers. The output of the NAS-FPN is 

a tensor with the dimension of ! × # × 256. Lastly, we  

 " " 

utilize contextual-spatial patch embedding (CSPE) [15] 

instead of the overlap patch embedding (OPE) that is used 

in the original work [13]. The main advantage of CSPE is 

its ability to change the positional encoding based on the 

input feature. The embedding of each image patch 𝑥$% can 

be formulated as follows ini Formula 1:  

  

𝑃$% = &’!𝑾")&’#𝑾,$-)&%,*&’!𝑾")𝒓%!#   (1)  

 

    

where 𝑊/ and W^K are unique and learnable parameters. 

Meanwhile, 𝑑0  denotes the output sequence from 

selfattention.  

Lastly, MiT transformer has five variants with 

different sizes on their embedded dimensions. In Section 

3, we shall compare the results of our models with 

different variants. MiT-B0 has the lowest number of 

parameters and the fastest among other variants. 

Meanwhile, the most accurate is MiT-B5 which is also the 

slowest and has the highest number of parameters.  

  

B.  Cascaded Region Proposal Network (CRPN)  

Prior works on RPN employ heuristic anchor 

generation algorithms to produce the initial object 

proposals in an arbitrary location. The downside of such 

algorithms is the reliance on predetermined shapes and 
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aspect ratios that requires prior domain-specific 

knowledge. Moreover, the anchors need to be aligned with 

the features from the backbone network. Consequently, 

conventional anchor-based RPN methods introduce 

unnecessary inductive biases and poorly aligned proposals 

that can hamper network training. To address this problem, 

we utilize cascade region proposal network (CRPN) which 

generates dynamic proposals over an offset field using 

adaptive convolution [16].  

CRPN is expected to generate a set of n bounding 

boxes prediction. The class-agnostic CRPN consists of 

two parts, an anchor generator and a proposal refinement 

network. In the anchor generation part, a grid that is 

defined by the kernel size of dilated convolution produces 

a set of proposals. Each proposal is loosely evaluated 

according to the intersection over union (IoU) with the 

ground-truth. Then, k-number of proposals are selected to 

be passed on to the class-agnostic proposal refinement 

network. Afterward, the IoU loss (ℒIoU = 1 − 𝐼𝑜𝑈) is 

calculated for each proposal to optimize the anchor 

generator part. In our proposed method, we empirically set 

k=1,000.  

Meanwhile, in the second part, the proposal 

refinement network measures the objectness score of each 

proposal. We substitute the loss function from the original 

CRPN to focal loss (2) because we generate more 

proposals in the prior stage. Moreover, unlike the ℒIoU in 

the first stage of the CRPN, the loss function utilized to 

refine the proposal is generalized IoU loss (ℒGIoU) as it 

offers better stability and correlation between groundtruth 

and prediction [17]. Finally, the overall loss calculated in 

the object proposal can be formulated as (3) where λ567, 

λ8567 = 10 and λ69% = 1, we can see in Figure  

2.  

  

 ℒℴ𝒷𝒿  (2)  
B/" =/" 

 = 1 : : FL =O(u, v), OB(u, v)C  

H/4 ⋅ W/4 
C@A ?@A 

  

ℒCRPN = λHIJℒIoU + λIKLℒobj + λOHIJℒGIoU  (3)  

  

  

  
Figure 2. The loss functions utilized during training and their 

corresponding outputs.  

  

C.  Region of Interests (RoI) Heads  

The RoI heads determine which classes each 

proposal corresponds with. The proposed method utilized 

multi-stage cascaded RoI heads architecture. Additionally, 

an edge-aware instance segmentation head is integrated 

into the last RoI head to refine the bounding box prediction. 

The network expects two outputs, bounding boxes 

predicted by H0, H1, and H2; and segmentation maps 

predicted by the segmentation head.  

  
C.1  Bounding Box Classification and Localization  

Bounding boxes from H0, H1, and H2 are 

evaluated sequentially with an increasingly higher IoU 

detection threshold for each stage. The detection 

thresholds for H0, H1, and H2 are 0.5, 0.7, and 0.9, 

respectively. With the increasing detection threshold, the 

RoI head in the later stage is expected to be more accurate. 

To evaluate the output of each stage, the network utilizes 

binary cross-entropy loss (ℒBCE) on n-number of 

classagnostic bounding boxes for the classification part, as 

written in (4).  

  

 S       

(4)  

HKRL 
T 

⋅ log(1 − BT),  

  
  

where B and 𝐵N are the class prediction and ground-truth 

pair of each bounding box. Meanwhile, the bounding 

boxes' dimension is evaluated with smooth-L1 loss 

(\mathcal{L}_{dim}). Thus, the overall bounding box 
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classification and localization loss function in the RoI 

heads can be formulated as (\ref{eq:roi_loss}), where 

λUVW and λ-$X are the weights for ℒℬ𝒞ℰ and ℒ𝒹𝒾𝓂, 

respectively.  

  

 ℒRoI = λ_‘aℒℬ𝒞ℰ + λbTcℒ𝒹𝒾𝓂        (5)  

  
C.2     Boundary-Aware Instance Segmentation Mask  

In extreme lighting and weather conditions, most 

visual features such as texture and color are unreliable. A 

standard cross-entropy loss only measures the loss on each 

pixel without considering the object's shape. Thus, it is not 

sufficient to train a network in extreme lighting and 

weather conditions. Hence, a boundary-aware object mask 

is proposed to guide the network to estimate the object of 

interest based on its shape and boundary to obtain higher-

quality segmentation masks.   

First of all, a shape-aware object mask considers 

the full shape of the object of interest despite visual 

obstruction caused by fog and insufficient lighting. By 

utilizing Dice Similarity Coefficient (DSC), the network 

takes into account the similarity of the overall shape 

between each predicted instance segmentation mask (𝑆) 

and the ground-truth (𝑆P) based on their union normalized 

by the sum of their areas, as formulated in (6), like we see 

in Figure 3.  

  

Figure 3. End-to-end knowledge distillation is performed 

when training the model in Foggy Cityscapes dataset. The  

bounding boxes and segmentation loss is described in (10), 

whereas the distillation loss is described in (11).  

  

 NL = 

∑2J∑SJdS+×SNSNdLL  (6)  

DSCJS, S 

  

The overall loss for all instances in the 

segmentation head can be calculated as the mean of DSC 

and pixel-by-pixel cross-entropy (CE).  

  

 j (7)  

ℒshape = N1 : CEJSj, SNjL 

+ =1 − DSCJSj, SNjLC  

  

Aside from the object's shape, foggy weather can 

also obstruct the visual edge or contour of an object, 

causing a degradation in the bounding box IoU. Therefore, 

a loss function based on Hausdorff distance (𝑑!) is added 

to improve the edge estimation between the prediction and 

ground-truth. Given a set of points along the contour of 

the predicted mask (A) and ground-truth (B), 𝑑! can 

be formulated as (8). The edge loss itself can be simply 

calculated as ℒedge = 1 − 𝑑!.  

  

dB = max \sup Kinf∈_ d (a, b), supK∈_ minf∈o d (a, b)b 

  (8)  
m∈o 

  
Finally, the overall loss function for the 

boundaryaware instance segmentation mask (9) can be 

formulated as the weighted sum of ℒshape and ℒedge with 

their respective weights, λpqrst and λt-ut.  

  

 ℒbound = λshapeℒshape+ λedgeℒedge      (9)  

  

D.       Total Loss Function  

The loss functions are calculated from various 

outputs from each stage of the detection, as illustrated in 

Figure 2. The total loss is calculated as the sum of ℒRPN,  

ℒRoI, and ℒbound  as previously mentioned in (3), (5), and 

(9), respectively. Therefore, the total loss can be written as 

(10).  

  

 ℒtotal = ℒRPN + ℒRoI + ℒbound  (10)  

  

E.        Training Strategies  

Transformer-based models are known for being 

data-hungry. Despite its ability to scale better than CNN, 

transformers require more data to train and are slower to 
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converge. Therefore, most transformers must be trained on 

huge data such as ImageNet before fine-tuned on the 

intended dataset [18]. For our backbone transformer, we 

utilize MiT pre-trained model using the weight from 

ImageNet [19]. Additionally, since our method is expected 

to be deployed in an outdoor environment, we have to 

consider some weather conditions such as rain and fog. As 

a result, we propose an end-to-end knowledge distillation 

strategy to allow our model to perform well in a dataset 

with extreme weather, such as foggy Cityscapes [12].   

The proposed end-to-end knowledge distillation is 

illustrated in Figure 3. The main model is evaluated and 

updated normally using Foggy Cityscapes images with 

loss function written in (10). After each training step, the 

teacher model is updated with the exponentially moving 

average (EMA) algorithm to stabilize the pseudo-labels. 

Afterward, we load regular and Foggy Cityscapes from the 

same scene. The images are cropped to reduce memory 

consumption and ensure the model learns the 

segmentation map effectively from the small 

highresolution patches rather than the long-range context 

provided by the whole image. Because the normal and 

synthesized fog images are supposed to be the same image, 

both teacher/EMA and student/main models are expected 

to have the same output logits. Therefore, we retrieve the 

output logits of the mask head of the EMA model (𝑦z) and 

use them as pseudo-labels for the main model's logits (𝑦p) 

with cross-entropy loss (CE) as the loss function [20]. 

Thus, the distillation loss can be formulated as (11) where 

T denotes the temperature parameter and is dynamically 

set to the maximum softmax probability (τ), and we can 

see in Figure 4.  

  

 ℒdistillation = CEJσ(y|; T = τ), σ(y}; T = τ)L  (11)  

  

  
Figure 4. Visual comparison of prior and proposed methods.  

Images on the left column are from the regular Cityscapes, 

whereas images on the right column are from the Foggy 

Cityscapes with the beta value set at 0.01.  

 RESULT 

AND DISCUSSION  

  

The proposed method is trained on a Ubuntu 20.04 

desktop with AMD Ryzen 9 3950X CPU, 128 GB RAM, 

and NVidia RTX 3090-24GB VRAM GPU. To obtain fair 

comparison and benchmarking, the prior and proposed 

methods are written using Pytorch [21] framework with 

MMDetection [22] deep learning toolbox. The proposed 

method is trained for 12 epochs with a polynomial 

scheduler and AdamW optimizer. Based on the results of 

several experiments, the best initial learning rate to train 

our model is 6 × 10~ .  

The proposed and prior methods are evaluated in 

the standard Cityscapes [23] and Foggy Cityscapes 

datasets. The cityscapes dataset is focused on autonomous 

driving development. The data is taken from cameras and 

Lidar mounted on a car to simulate a driving situation. 

Meanwhile, Foggy Cityscapes artificially generates foggy 

scenes from Cityscapes' images. The evaluation metrics 

used are AP across scales (mAP, mAPS, mAPM, mAPL) 

which are built-in inside MMDetection toolbox and have 

been used in most modern object detection datasets [24]. 

In addition, mean intersection over union (mIoU) is also 

calculated for methods that are able to produce a 

segmentation map.  
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Table 1. Bounding box and instance segmentation evaluation 

on Cityscapes [23] dataset with eight classes. Best values are 

written in bold.  

Method  Backbone  AP  mIoU  

F-RCNN [25]  ResNext-101  13.2  -  

YOLO-X [26]  CSPDarknet  26.3  -  

M-RCNN [27]  GVT-S  30.7  27.4  

Cas. RCNN [28]  Swin-S  34.9  30.2  

CBNet (Ours)  MiT-B5  41.4  35.9  

  

Table 2. Bounding box and instance segmentation evaluation 

on Foggy Cityscapes dataset with eight classes. In the 

rightmost column, we listed the mIoU drop with respect to 

the  

results on the regular Cityscapes dataset, which are listed in 

Table 1.  
Method  AP  mIoU  AP Drop  

F-RCNN [25]  12.9  -  0.3  
YOLO-X [26]  22.1  -  4.2  
M-RCNN [27]  26.4  22.2  4.3  
Cas. RCNN [28]  31.8  27.8  3.1  
CBNet (Ours)  39.1  34.5  2.8  
CBNet-DD (Ours)  39.5  34.5  1.9  

  

A.        Comparison with Prior Methods  

To test the versatility and effectiveness of our 

cascaded boundary-aware network (CBNet), the proposed 

method is evaluated along with popular prior methods in 

object detection tasks using the newest backbone networks, 

as listed in Table 1 and 2. Aside from minor adjustments 

for training on the Cityscapes dataset, prior methods are 

run with their default settings.  

  

A.1.     Evaluation on regular Cityscapes.   

Table 1 summarizes the detection results in 

Cityscapes dataset validation set. The AP scores obtained 

by our proposed method are significantly higher than prior 

methods, with a 6.5 improvement in the overall AP 

compared with the second best, Cascade Mask R-CNN 

(Cas. RCNN). The drawback of our network is the low 

inference speed. On the other hand, the one-stage object 

detection method, YOLO-X, obtains higher fps to make 

up for the low AP scores. Meanwhile, the cascade design 

in the RoI heads of Cascade Mask RCNN and CBNet 

proves to be capable of removing many false positives, as 

shown in Figure 4. However, CBNet improves upon this 

further by also using the cascade design in the object 

proposal network. Consequently, the APS that represents 

small bounding boxes of distant objects in CBNet is 

significantly higher than prior methods, and we can see in 

Figure 5 and Figure 6.  

  

Figure 5. Visual comparison of prior and proposed methods' 

segmentation maps. The proposed method demonstrates its  

ability to accurately predict segmentation map on a challenging 

condition  

  

  
Figure 6. Visualization of the proposed shape and edge-aware 

losses along with knowledge distillation training. Each  

subsequent column starting from the "Baseline" adds to the 

preceding components, as listed in Table 3.  
  

A.2.   Evaluation on Foggy Cityscapes.   

 The main objective of the experiment in Foggy 

Cityscapes is to ensure the model is robust enough to be 

deployed during extreme weather. Therefore, the model 

must retain its detection capabilities in Foggy Cityscapes 

with the lowest AP drop possible. In Figure 5, the 

performance of instance segmentation methods in extreme 

weather is compared. CBNet is able to detect objects with 

high precision and recall rate due to the combination of the 

Cascade RPN and Cascade RoI heads. Meanwhile, Mask 

RCNN has low precision due to the low-quality proposals, 

whereas Cascade Mask RCNN has high precision but a 

low recall rate because most of the proposals generated by 

the RPN are not good enough for the Cascade RoI heads.  

The quantitative assessments in Foggy Cityscapes 

are summarized in Table 2. Originally, the AP drop in 

baseline CBNet is 2.8%. However, after implementing 

shape-aware and edge-aware loss along with the end-

toend knowledge distillation (CBNet-KD), the proposed 

method is able to reduce the AP drop to 1.9%. Both CBNet 

and CBNet-DD are only inferior to Faster-RCNN in terms 

of AP drop. However, both models are vastly superior in 

terms of the overall AP scores. From the visual assessment 

provided in Figure 4, CBNet result is almost similar to 
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Cascade Mask RCNN, safe for few misclassifications for 

small and distant objects.   

  

B.        Ablation Study  

An ablation study is performed to understand the 

impact of the novel loss function and knowledge 

distillation training strategy. The ablation study is 

performed on the Foggy Cityscapes dataset so that 

knowledge distillation can be performed by using the 

model trained on the regular Cityscapes as the teacher. In 

the baseline CBNet, the segmentation head's losses are 

substituted by the standard cross-entropy loss.  

  

B.1      Shape-aware and edge-aware loss.   

The shape-aware loss successfully improves the 

bounding boxes AP by a small margin of 0.2 percent. 

However, shape-aware loss can remove most of the 

obvious false positives from the predictions, as shown in 

the first row of Figure 6. Combining these two loss 

functions improves the AP and mIoU by 0.6 and 0.9 

percent, respectively. Moreover, shape-aware and 

edgeaware losses can improve the detection of distant 

objects, as illustrated in the second row of Figure 6, and 

we can see in Table 3.  

  

Table 3. Ablation study of the proposed method and its 

components on Foggy Cityscapes dataset.  

  

Ablation Settings  

 AP  mIoU  Shape-Aware Edge- Knowledge Loss 
Aware Loss Distillation  

 -  -  -   38.6  33.6  

 ✓  -  -  38.8 (↑0.2) 33.5 (↓0.1)  

 ✓  ✓  -  39.2 (↑0.6) 34.5 (↑0.9)  

 ✓  ✓  ✓  39.5 (↑0.9) 34.5 (↑0.9)  

  

B.2.     End-to-end knowledge distillation training.   

End-to-end knowledge distillation training 

simultaneously trains the model on regular and Foggy 

Cityscapes. Knowledge distillation training provides more 

stable training for the model trained on Foggy Cityscapes 

by providing additional regularization terms based on the 

difference in their output logits. Thus, the model is less 

affected by the hyper-parameters, such as the initial 

learning rate and the random seed, and can minimize the 

AP drop between the two datasets. Unlike the noticeable 

improvement by shape-aware and edgeaware losses, the 

improvement by knowledge distillation training is more 

subtle but impactful nonetheless. In summary, using all 

three components, CBNet can improve both AP and mIoU 

scores by 0.9% and minimize the AP drop from extreme 

weather conditions to 1.9%.  

  

CONCLUSION  

  

In this work, a shape and edge-aware object detection 

framework is proposed. It leverages the powerful yet 

lightweight transformer network as a feature extractor and 

adapts the extracted features with NAS-FPN to improve 

the network's performance on multi-scale detection. The 

proposed network, CBNet, adopts the two-stage object 

detection approach with cascade RPNs as the object 

proposal and cascade RoI heads as the classification 

network. Most modern object detection frameworks can 

perform well in normal weather but perform significantly 

worse in extreme weather. This drawback could not be 

tolerated in vital real-world applications, such as 

autonomous driving. Thus, a benchmark and comparison 

with popular object detection frameworks have been 

performed to evaluate the effectiveness and robustness of 

the proposed network in normal and extreme weather 

conditions. Based on the overall AP score for bounding 

box prediction, CBNet obtains a significant 6.5% margin 

from the prior best-performing method, Cascade Mask 

RCNN, in the regular Cityscapes dataset. CBNet also 

performs better than Cascade Mask RCNN in instance 

segmentation tasks by a 5.7% margin. Meanwhile, in the 

Foggy Cityscapes dataset, CBNet-DD obtains 7.7% 

higher AP and 6.7% higher mIoU compared with Cascade 

Mask RCNN. Compared with prior methods, CBNet can 

minimize the AP and mIoU drop in extreme weather using 

the boundary-aware loss and the end-to-end knowledge 

distillation method. In the future, it would be beneficial to 

implement our proposed network on a more complex and 

challenging computer vision task, such as panoptic 

segmentation.  
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