DOI: 10.30651/jqm.v9i01.19549

QANUN MEDIKA

JURNAL KEDOKTERAN FKUM SURABAYA

http://journal.um-surabaya.ac.id/index.php/qanunmedika

Research Article

The Prevalence and Cost Implications of Bloodstream Infection Producing Extended-Spectrum Beta-Lactamase (ESBL) in Adult Patients at Dr. Soetomo General Academic Hospital

Neneng Dewi Kurniati^{1,2*}, Irwan Syahrir^{3,4}, Musa Ghufron⁴

- 1) Hospital Administration Magister, Faculty of Medicine, Universitas Muhammadiyah Surabaya
- 2) Department of Clinical Microbiology, Dr.Soetomo General Academic Hospital, Surabaya
- 3) Senior Lecturer in Administration Magister Technic Faculty, Universitas Muhammadiyah Surabaya
- 4) Senior Lecturer in Administration Magister Medical Faculty, Universitas Muhammadiyah Surabaya

ARTICLE INFO

Submitted : 17 th February 2025

Accepted : 18th July 2025 Published : 25th July 2025

Keywords:

ESBL, BSI, MDRO, hospitalization

*Correspondence:

neneng.dewi.kurniati-2023@fk.um-surabaya.ac.id

This is an Open acces article under the CC-BY license

ABSTRACT

Bloodstream infections (BSIs) caused by extended-(ESBL)-producing spectrum beta-lactamase Enterobacteriaceae represent a growing concern in healthcare settings, particularly in tertiary hospitals. These infections are associated with limited therapeutic options, increased mortality, and rising healthcare costs. This study aimed to describe the clinical, microbiological, and economic characteristics of adult inpatients diagnosed with hospital-acquired (HA) BSIs due to ESBL-producing Enterobacteriaceae at Dr. Soetomo General Academic Hospital from January 1 to December 31, 2024. A crosssectional study was conducted using retrospective data from adult inpatients (≥18 years) with confirmed HA-BSIs caused by ESBL-producing Escherichia coli, Klebsiella pneumoniae, or Proteus mirabilis. Only the first positive blood culture per patient was analyzed. Communityinfections and non-Enterobacteriaceae acquired organisms were excluded. The most frequent pathogen was Escherichia coli ESBL, especially among patients from medical wards. BSIs occurred predominantly in medical and intensive care units. Notably, microbiological confirmation of ESBL-producing organisms led to higher claim reimbursements through the national health insurance system, yielding a positive cost margin despite longer hospital stays and expensive treatment regimens. In conclusion, ESBL-producing Enterobacteriaceae remain a major challenge in managing HA-BSIs at Dr. Soetomo General Academic Hospital. While clinically burdensome, accurate microbiological diagnosis also supports optimal resource utilization and insurance claim efficiency in the hospital setting.

JURNAL KEDOKTERAN FKUM SURABAYA

http://journal.um-surabaya.ac.id/index.php/qanunmedika

INTRODUCTION

Bloodstream infections (BSIs) remain significant cause of morbidity and mortality among hospitalized patients worldwide, especially in critical care and immunocompromised populations. emergence and spread of antimicrobialresistant organisms, particularly extendedspectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, have significantly complicated the clinical management of BSIs. ESBL enzymes confer resistance to a broad range of beta-lactam antibiotics, including penicillins, third-generation cephalosporins, and aztreonam. This limits treatment options increases dependence on last-line and antibiotics such as carbapenems (CDC, 2021).

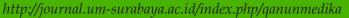
The global prevalence of ESBL-producing pathogens has been rising, with marked increases reported in both community and healthcare settings, especially in low- and middle-income countries. Hospital-acquired (HA) BSIs caused by ESBL-producing organisms are particularly concerning due to their association with prolonged hospital stays, increased healthcare costs, higher rates of intensive care unit (ICU) admission, and increased mortality (Schwaber & Carmeli, 2007; Jean et al., 2022). Identifying these infections' clinical and epidemiological characteristics is critical for improving infection control, guiding empirical antibiotic therapy, and informing antimicrobial stewardship strategies (NICE, 2016).

Despite the growing clinical importance of ESBL-BSIs, there is limited data specific to Indonesian tertiary care centers, including Dr. Soetomo General Academic Hospital. This study aims to characterize the microbiological features of adult inpatients diagnosed with hospital-acquired bloodstream infections due to ESBL-producing *Enterobacteriaceae*

and the cost implications over one year in Dr. Soetomo General Academic Hospital, Surabaya.

METHODS

This was a retrospective cohort study conducted at Dr. Soetomo General Academic Hospital, a tertiary care and teaching hospital in Surabaya, Indonesia. The study period covered one full calendar year, from 1st January to 31st December 2024. The study aimed to describe the characteristics of adult inpatients with hospital-acquired (HA) bloodstream infections (BSIs) caused by extended-spectrum beta-lactamase (ESBL)-producing *Enterobacteriaceae*.


Data were obtained from hospitalized adult patients (≥18 years old) who developed a laboratory-confirmed BSI due to Enterobacteriaceae during their admission. Only HA-BSI cases were included in the analysis. A BSI was classified as hospital-acquired if the first positive blood culture was obtained ≥48 hours after hospital admission. The date of BSI onset was defined as the date of collection of the first blood sample that yielded an *Enterobacteriaceae* isolate.

Patients were excluded from the study if the BSI was classified as community-acquired, defined as detection of BSI within the first 48 hours of admission. In addition, BSIs caused by non-Enterobacteriaceae pathogens were excluded. If the same *Enterobacteriaceae* strain was isolated more than once in the same patient, only the first isolate was included in the analysis to avoid duplication.

Microbiological data were collected from the hospital's clinical microbiology laboratory records. Blood cultures were processed according to standard procedures, and identification of Enterobacteriaceae and ESBL production was performed using the BD Phoenix automated system and confirmed by

JURNAL KEDOKTERAN FKUM SURABAYA

phenotypic confirmatory tests according to Clinical and Laboratory Standards Institute (CLSI) guidelines.

The information. including ward of hospitalization and medical cost, was extracted from electronic medical records. Data were analyzed using descriptive statistics to determine the frequency and distribution of ESBL-producing Enterobacteriaceae characteristics during the study period. This study has been ethically approved by the Ethics Committee of Dr. Soetomo General Academic Hospital with reference number 1294/KEPK/ IV/2025.

RESULTS

Table 1 shows the extended-spectrum beta-lactamase (ESBL)-producing *Enterobacteriaceae* that caused hospital-acquired (HA) bloodstream infections (BSIs) in Dr. Soetomo General Academic Hospital in 2024 were *Escherichia coli ESBL, Klebsiella pneumoniae ESBL*, and *Proteus mirabilis ESBL*. The total of these isolates was 170.

Table 1. Total ESBL bacteria

PATHOGENS	ESBL (%)	Number of isolates
Escherichia coli ESBL	61.53 %	105
Klebsiella pneumoniae ESBL	33.13 %	57
Proteus mirabilis ESBL	4.75 %	8
Total	100	170

Table 2. Distribution of ESBL Bacteria

ROOMS	AMOUNTS	%
Emergency Department	12	8.29
Klebsiella pneumoniae ESBL	4	2.37
Escherichia coli ESBL	8	5.92
Surgery Wards	11	6.51
Klebsiella pneumoniae ESBL	3	1.78
Escherichia coli ESBL	7	4.14
Proteus mirabilis ESBL	1	0.59
Medical Wards	72	42.60
Klebsiella pneumoniae ESBL	24	13.60
Escherichia coli ESBL	45	26.63
Proteus mirabilis ESBL	3	1.78
Intensive Care Unit	72	42.60
Klebsiella pneumoniae ESBL	26	15.38
Escherichia coli ESBL	42	24.85
Proteus mirabilis ESBL	4	2.37
Total	170	100

JURNAL KEDOKTERAN FKUM SURABAYA

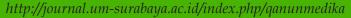
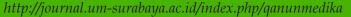


Table 3. Distribution of Loss and Profit by ESBL Bacteria Type

DOOMS	LOSS	PROFIT
ROOMS	(Patients)	(Patients)
Emergency Department	5	7
Escherichia coli ESBL	5	3
Klebsiella pneumoniae ESBL	0	4
EMERGENCY DEPARTMENT INTENSIVE		
ROOM	16	27
Escherichia coli ESBL	12	22
Klebsiella pneumoniae ESBL	3	3
Proteus mirabilis ESBL	1	2
SURGERY WARDS	1	10
Escherichia coli ESBL	0	7
Klebsiella pneumoniae ESBL	0	3
Proteus mirabilis ESBL	1	
MEDICAL WARDS	20	52
Escherichia coli ESBL	12	33
Klebsiella pneumoniae ESBL	7	17
Proteus mirabilis ESBL	1	2
INTENSIVE CARE UNIT	2	30
Escherichia coli ESBL	2	9
Klebsiella pneumoniae ESBL	0	20
Proteus mirabilis ESBL	0	1
Total Patients	44	126

Table 2 shows the most common distribution of ESBL-producing *Enterobacteriaceae* that caused HA-BSIs from medical wards and intensive care units. The most common ES-BL-producing *Enterobacteriaceae* that caused HA-BSIs were *Escherichia coli ESBL* in medical wards.


Table 3 shows the distribution of medical costs' loss and profit by ESBL-producing *Enterobacteriaceae* that caused HA-BSIs in Dr. Soetomo General Academic Hospital in 2024. It shows that the microbiological culture that resulted in ESBL-producing *Enterobacteriaceae* from HA-BSIs gave more profit in the claim of medical insurance.

DISCUSSION

This study highlights the epidemiological and clinical characteristics of adult inpatients diagnosed with bloodstream infections (BSIs) caused by extended-spectrum beta-lactamase (ESBL)-producing organisms at Dr. Soetomo General Academic Hospital. The high incidence of ESBL-producing pathogens, particularly Escherichia coli, Klebsiella pneumoniae, and Proteus mirabilis, reflects an ongoing challenge in managing hospital-acquired (HA) infections in tertiary care settings (Lee et al., 2019; Rodríguez-Baño et al., 2018). These infections predominantly originated from medical wards and intensive care units (ICUs), where patients often present with complex comorbidities and are exposed to broad-spectrum antibiotics and

JURNAL KEDOKTERAN FKUM SURABAYA

invasive procedures (Yap et al., 2021). Notably, the most frequent isolate was *Escherichia coli* ESBL, especially in patients from medical wards, indicating a possible link to urinary tract—related bloodstream infections or postabdominal surgery complications (Russo & Johnson, 2003).

The presence of ESBL-producing bacteria significantly complicates BSI management due to resistance to third-generation cephalosporins and monobactams, necessitating the use of last-resort antibiotics such as carbapenems (Paterson & Bonomo, 2005; Bush & Bradford, 2016). Although most isolates in this study remained carbapenem-susceptible, reliance on these agents raises concerns about the rise of carbapenem-resistant *Enterobacteriaceae* (CRE) (Meletis, 2016; Tamma et al., 2021).

Compared with regional data, the prevalence of ESBL-BSIs in this study is consistent with findings from other tertiary hospitals in Southeast Asia (Jean et al., 2022). However, antimicrobial resistance patterns may vary due to differences in antimicrobial use, diagnostic resources, and infection control policies (World Health Organization, 2017). Continuous local surveillance and antimicrobial stewardship are essential to ensure empirical treatment remains effective and to reduce selective pressure for resistance (Tamma et al., 2021; Indonesian Ministry of Health, 2023).

Economically, ESBL-related infections are known to increase healthcare resource use, including longer hospital stays and higher drug costs (Russo & Johnson, 2003). Interestingly, analysis of national health insurance claims at Dr. Soetomo General Academic Hospital in 2024 revealed that HA-BSI cases caused by ESBL-producing *Enterobacteriaceae* yielded higher reimbursement due to classification as high-severity cases (Direktorat Jenderal Pelayanan Kesehatan, 2022). This allowed

hospitals claim for comprehensive diagnostics and advanced antimicrobial treatments. Consequently, although ESBL infections impose a greater clinical burden, they also result in a net positive hospital margin due to successful claim approvals, demonstrating the dual value of microbiological confirmation (Ritchie & Roser, 2019). These findings reinforce the importance of infection control bundles, including hand hygiene, antimicrobial de-escalation, catheter care, and early removal of invasive devices (Kaye et al., 2021; Indonesian Ministry of Health, 2023). Special attention should be paid to high-risk units like medical wards and ICUs, where ESBL-producing Enterobacteriaceae are most frequently isolated.

This study has several limitations, including its retrospective design and single-center scope, which limit generalizability. Additionally, molecular analysis of ESBL genes was not performed, which could have offered further insights into resistance mechanisms and transmission (Rodríguez-Baño et al., 2018). Nonetheless, this study contributes meaningful data on the clinical, microbiological, and economic aspects of ESBL-BSI in a high-volume Indonesian tertiary hospital. Future prospective multicenter studies are needed to assess molecular resistance patterns and evaluate cost-effective prevention strategies in similar healthcare settings.

CONCLUSION

Hospital-acquired bloodstream infections caused by ESBL-producing *Enterobacteriaceae* remain a significant clinical and economic concern at Dr. Soetomo General Academic Hospital. In 2024, the predominant pathogens were *Escherichia coli, Klebsiella pneumoniae*, and *Proteus mirabilis*, with *E. coli* ESBL being most commonly isolated from medical ward

JURNAL KEDOKTERAN FKUM SURABAYA

http://journal.um-surabaya.ac.id/index.php/qanunmedika

patients. These infections were associated with prolonged hospitalization and complex clinical management, yet they also generated higher insurance claim reimbursements due to their classification as severe cases requiring intensive diagnostics and high-cost treatments. Strengthening infection control measures, antimicrobial stewardship, and early microbiological diagnostics is essential to mitigate the burden of ESBL-related BSIs while optimizing both clinical outcomes and hospital resource utilization.

REFERENCES

- Bush, K., & Bradford, P. A. (2016). β-Lactams and β-lactamase inhibitors: An overview. Cold Spring Harbor Perspectives in Medicine, 6(8), a025247. https://doi.org/10.1101/cshperspect.a025247
- Busse, R. (2012). Do diagnosis-related groups explain variations in hospital costs and length of stay? Analyses from the EURODRG project for 10 episodes of care across 10 European countries. *Health Economics*, 21(Suppl.2), 1–5. https://doi.org/10.1002/hec
- CDC. (2021). Background of the Management of Multidrug- Resistant Organism in Healthcare Settings Guideline, https://www.cdc.gov/infection-control/hcp/mdro-management/background.html
- Direktorat Jenderal Pelayanan Kesehatan Kemenkes RI. (2022). Panduan pengajuan klaim Jaminan Kesehatan Nasional (JKN) untuk RS rujukan kelas A dan B. Jakarta: Kemenkes RI.
- Indonesian Ministry of Health. (2023). Pedoman Nasional Pengendalian Resistensi Antimikroba di Rumah Sakit. Jakarta: Kemenkes RI.
- Jean, S. S., Hsueh, P. R., Lee, W. S., & Yu, C.

- J. (2022). Hospital-acquired bloodstream infections: Current trends and challenges in the Asia-Pacific region. Journal of Global Antimicrobial Resistance, 29, 321–329. https://doi.org/10.1016/j.jgar.2021.08.011
- Kaye, K. S., Pogue, J. M., Tran, T. B., Nation, R. L., & Li, J. (2021). Agents of last resort: The role of polymyxins and newer antibiotics in treating resistant Gram-negative infections. Current Opinion in Infectious Diseases, 34(6), 519–528. https://doi.org/10.1097/QCO.000000000000000792
- Lee, C. H., Lee, M. H., Ko, W. C., & Chang, C. M. (2019). Epidemiology and clinical significance of bloodstream infections caused by ESBL-producing Enterobacteriaceae. Journal of Microbiology, Immunology and Infection, 52(4), 515–524. https://doi.org/10.1016/j.jmii.2018.12.005
- Meletis, G. (2016). Carbapenem resistance: Overview of the problem and future perspectives. Therapeutic Advances in Infectious Disease, 3(1), 15–21. https:// doi.org/10.1177/2049936115621709
- NICE. (2016). Suspected sepsis: recognition, diagnosis and early management. *NICE guideline*. www.nice.org.uk/guidance/ng51.
- Paterson, D. L., & Bonomo, R. A. (2005). Extended-spectrum β-lactamases: A clinical update. Clinical Microbiology Reviews, 18(4), 657–686. https://doi.org/10.1128/CMR.18.4.657-686.2005
- Ritchie, H., & Roser, M. (2019). Causes of death. Our World in Data. https://ourworldindata.org/causes-of-death
- Rodríguez-Baño, J., Gutiérrez-Gutiérrez, B., Machuca, I., & Pascual, Á. (2018).

JURNAL KEDOKTERAN FKUM SURABAYA

http://journal.um-surabaya.ac.id/index.php/qanunmedika

Treatment of infections caused by extended-spectrum-beta-lactamase-, AmpC-, and carbapenemase-producing Enterobacteriaceae. Clinical Microbiology Reviews, 31(2), e00079-17. https://doi.org/10.1128/CMR.00079-17

Russo, T. A., & Johnson, J. R. (2003). Medical and economic impact of extraintestinal infections due to Escherichia coli: Focus on an increasingly important endemic problem. Microbes and Infection, 5(5), 449–456. https://doi.org/10.1016/S1286-4579(03)00049-2

Schwaber, M. J., & Carmeli, Y. (2007). Mortality and delay in effective therapy associated with extended-spectrum β-lactamase production in Enterobacteriaceae bacteraemia: A systematic review and meta-analysis. Journal of Antimicrobial Chemotherapy, 60(5), 913–920. https://doi.org/10.1093/jac/dkm318

Tamma, P. D., Aitken, S. L., Bonomo, R. A., Mathers, A. J., van Duin, D., & Clancy, C. J. (2021). Infectious Diseases Society of America Guidance on the treatment extended-spectrum β-lactamaseproducing Enterobacterales (ESBL-E), Enterobacterales carbapenem-resistant (CRE), and Pseudomonas aeruginosa with difficult-to-treat resistance (DTR-P. aeruginosa). Clinical Infectious Diseases, 72(7), e169-e183. https://doi. org/10.1093/cid/ciaa1478

World Health Organization. (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. https://www.who.int/publications/i/item/WHO-EMP-IAU-2017.12

Yap, P. S. X., Ahmad Kamar, A., Chong, C. W., & Yap, I. K. S. (2021). Risk factors of bloodstream infections caused by multidrug-resistant organisms in Asia. Infectious Disease Reports, 13(1), 80–91. https://doi.org/10.3390/idr13010010