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Abstract: In this
verter) controlled Fermanent Magnet Synchron

r detailed model and average model of the MMC (Modular Multilevel Con-
senerator (PMSG) based direct drive wind tur-
bine concept are proposed. The models are used T analyze the steady state and transient character-
istics of the grid connectivity study of the wind turbine generator. Configuration of electrical topol-
ogy and control scheme of the wind turbine generator for both models are comprehensively pre-
sented. In the detailed model, the MMC circuit is represented by power electronic IGBTs with
switching phenomena considered. While in the average model, the MMC circuit is simplified by
using voltage source represe@@tion, hence complexity of MMC circuit and simulation duration of
the analysis can
also investigated

educed. Comparative analysis between the detailed and simplified models is
ough simulation performed by using PSCAD/EMTDC. The simulation results
show that both models have a good controllability and dynamic stability in the cases of steady state
and transient conditions. The simulation results also confirm that the average model has adequate
accuracy and simulation time can be reduced significantly.

Keywords: Wind Turbine Generator; Modular Multilevel Converter; Permanent Magnet Synchro-
nous Generator; Steady Stated and Transient Analyses; Grid connectivity study.

1. Introduction

A few years earlier, Technologies of wind turbine generator have been increasing
significantly in the size such as hub height, rotor diameter, and generator capacity to con-
vert more power from wind energy with higher efficiency, lower investment and operat-
ing costs. In the early year of 2021, the power capacity of wind turbine generator has in-
creased up to 15 MW [1], and in year of 2035 the capacity of wind turbine genela:ur would
be predicted to reach up to 17 MW [2]. Along with the increasing capacity, the connection
of the wind turbine generators to grid power system by traditional two levels or three
levels converters requires many powers electronic devices such as IGBTs in seri par-
allel connections to achieve very high power capacity and operating voltage. Modular
Multilevel Converter (MMC) is a promising solution for high-power capacity wind power
generation. Compared to other conventional converter technologies, the MMC is a novel
converter concept that has many superiorities such as a simpler structure and flexible de-
sign which enables to expand the number of levels and replace the submodules easily, so
that the maintenance handling becomes easy [3,4]. In addition, connecting the MMC to a
grid system without a transformer is possible [5].

Implementation of MMC in wind power generator, however, has not be ported
so much. Most of the reports are investigating about stability of grid connected wind farm
connected via MMC based High Voltage Direct Current (HVDC) Transmission system [6-
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10]. Only few papers discussed about topology concept of implementation of MMC con-
trolled wind turbine generator. Investigation of performance and eppestasites topology
of MMC for 2 MW 0.69 kV and 10 MW 10 kV have been discussed in [11], however the
study only discusses about the grid side converter and concenters at eppertanities topel
egy=forthe MM and losses distribution between submod In [12], the appllcatl(m of
MMC controlled multi-phase PMSG has been proposed. The Tault tolerant control strategy
of the MMC lidated on simulation analysis with detailed model representation. It can
be said that a comprehensive discussion about the modelling of MMC controlled wind
turbine generat or grid connectivity study has not been widely discussed.

Feasibility study on stability of wind turbine generator connecte grid system is
particularly important in a wind farm design. The dynamic behavior tunder steady state
and transient conditions of a wind farm will affect voltage and frequency stability of grid
system. Large variation of energy production of a wind farm or out-of-synchronism of a

huge capacity of wind farm due to a short circuit fault can have great impact on power
system stability and power quality [13,14]. Therefore, modeling and simulation analyses
of grid connectivity of wind farm in the early stage in development of wind farm is very
essential.

In m paper, detailed and average models of grid connected MMC controlled Per-
manent Magnet Synchronous Generator (PMSG) based direct drive wind turbine are pro-
posed. The models can be used as representation model of the wind turbine generator for
grid connectivity study. PMSG was chosen on the basis that most manufacturers use this
type of generator for their large-capacity wind turbine generators [15-17] due to its high
efficiency and attractive features suitable for wind turbine concept.

In the detailed model, the MMC includes detailed representation of power electronic
IGBT converters and the MMC circuit ifonfigured by sub-module which has two levels
half bridge configuration composed of two IGBTs with anti-parallel diodes and a capaci-
tor. As switching phenomenon with multi-carrier modulation technique is considered in
the modeling, the model should be discretized at a relatively small simulation time step
(10 microseconds). The detailed model is very suited for analyzing the dynamic perfor-
mance of control systems and harmonics in a short duration efthesisulation.

In the average model, the MMC circuit with power electronic IGBT modules is rep-
resented by equivalent voltage sources generating ac voltages. Switching phenomenon is
neglected, and hence this model allows using much larger simulation time step (100 mi-
croseconds). Therefore, the af@fage model is suited for simulation analysis of long time.

The organization of the paper can be summarized as follows: Section 2 presents the
proposed detailed model of MMC controlled PMSG based wind turbine. Section 3 pre-
sents the proposed average model of MMC controlled PMSG based wind turbine. Section
4 discusses about simulation and analysis of grid connected efa56-68% wind farm which
consists of 5 (five) unit of 10 MW PMSG based wind turbine controlled by MMC system.
The simulation and rsis focused on steady state and transient analyses of both pro-
posed models which have been performed by using PSCAD/EMTDC. Finally, in Section
5 conclusions of the study are presented.

2. Detailed Model of MMC Controlled Wind Turbine Generator

Figure 1 sho nfiguration of MMC controlled wind turbine genersf@r in the de-
tailed model. The d turbine generator is gearless system in which theegmd turbine
rotor directly drives rotor shaft of the PMSG. The PMSG is multipoles type of generator
that operates at variable voltage and frequency. Electrical power produced 8§ the gener-
ator is supplied to grid system with constant voltage and frequency through back-to-back
converter. The back-to-back convert@jis formed from two MMCs, namely Stator side
MMC and Grid side MMC which are inked by DC link circuit. Three phase ac voltage of
PMSG stator winding is rectified by Stator Side w, and the dc voltage of DC link circuit
is inverted to AC voltage by Grid Side MMC. The 5tator side MMC is connected to stator
winding terminal of PMSG, and the Grid side MMC is connected to grid system through
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a step-up transformer (TR). On the sta ide MMC, Is'* and V5@ are respectively @ee 28

phase currents and voltages from the gﬂr winding, and e is rotational sp@e?f rotor 99

shaft of the PMSG. On the grid side MMC, [c™ and V¢ are respectively phase 100
currents and voltages from the terminal of the grid side MMC. Each of the C system 101
is equipped with the main MMC controller, inner MMC controller, and the Phase-Shifted 102
Pulse Width Modulation (PS-PWM) circuit. The DC link circuit is configured by two ca- 103
pacitors (Cu) arranged in series. The DC link circuit is also equipped with over voltage 104
protection system controlled by a DC chopper. For more details, each part of detailed 105

model of MMC controlled wind turbine generator would be explained as follows. 106
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Figure 1. Configuration of MMC controlled wind turbine generator in detailed model. 108
% Wind Turbine Model 109
2.1.1. Power conversion and characteristics of wind turbine 110

In this paper wiraturbine direct driven generator with variable speed concept is 111
considered. The actual mechanical power output of wind turbine extracted from wind can 112
be written as follows [18]: 113

B, =05 pnR* V§ Cp(4,8) @

where, P is converted power from wind energy (W), R is rotor blade radius (m), @is 114
wind velocity (m/s), p is air density (Kg/m?), and C ower coefficient. The C, depends 115
on characteristic wind turbine coefficients (c: to cs), pitch angle (f) and tip speed ratio (1) 116

which can be calculated by the equations as follows [16]: 117
cy ~fs

GAB =i —cs f=ca)e ™ +cg @)

L
1 1 0.035 3
L T A-008pF B+ 1 (3)

w.-R

=% *

The values of characteristic C()efie‘nts of the wind turbine,ml cs, are 0.5176, 116, 0.4, 5, 118
21 and 0.0068, respectively [18], and ax is rotor speed of the wind turbine (rad/s). 119
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From Equations 1 to 4 the characteristics of wind turbine apmwn in Figures 2 and 124

3. The relation of power output and rotor speed is depicted in Figure 2, and t lation 125

of power coefficient and tip speed ratio characteristicis depicted in Figure 3. The Optimum 126

tip speed ratio (Aq) of B.J@nd the optimum power coefficient (Cpyr) of 0.48 are obtained 127

@en wind velocity is at Tated speed of 12 m/s. The wind turbine power output through 128
a

ximum Power Point Tracking (MPPT) is calculated as follows [19]: 129
3
w.-R
Poppe = 0.5p m R? (T) Coopt (5)
opt
63

while, the wind turbine reference power () is limited to rated power 1.0 pu when the 130
rotgmspeed is equivalent to or over rated speed 1.0 pu. 131
2.1.2. Drive train model 132

The moving parts of direct driven wind turbine generator are comprised of following 133
components: rotor blades with pitching mechanism system, a hub, an@ rotor shaft. 134
Generally, in the study of grid connectivity of wind turbine generator the drive train 135
model is treated as two-lumped mass or one-lum ass models [20]. Because the wind 136
turbine generator in this study is totally seperated Trom the grid system by a back-to-back 137
MMC system, hence, the one-lumped mass model of the drive train is considered here. 138
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29
Figure 4. One-lumped mass model of wind turbine generator

The scheme of the drive train model in one-lumped mass model is given in Figure 4
which is represented by the following equation [20]:
dew, _ T, — Ty _ %wr
dt Jeq Jeq

(6)

where Tw is the wind turbine mechanical torque (N m)__g is the generator electrical torque
(Nm), [« is the equivalent rotational inertia of the wind turbine generator (kg.m2), and Bn
is the damping coefficient [Nm/s], which is derived from:

do, Jt
i =)ot )

Je and Jur ea respectively rotational inerias of the generator rotor and the wind turbine
rotor. Fhe 71; is the gear ratio, which can be set 1 in case of direct drive system (without
gearbox).

2.1.3. Pit lade controller

The power output of wind turbi nerator always fluctuates depending on wind
speed variations and its power output 1s not allowed tc eed its rating capacity. There-
fore, the pitch blade controller works to maintain mtoged of the wind turbine not ex-
ceeding the permissible speed limit. The schematic diagram of pitch blade controller
model is shown in Figure 5 [21]. The C(mtqller maintains the rotor speed of wind turbine

e control I@p of pitch actuator is represented
by a first order transfer function with time constant T. PI controller is used to obtain pitch
angle reference (f%).

(ewr) not to exceed its reference value (w:*).

BFmax Prmax
Y P /
+ 1
B —"(P" Pl o e el e B Wt
1 = . RateLimier 7
@:*  Fmin

Figure 5. The pitch blade controller model.

Generator Model

For the generator model, r:manent magnet synchronous machine model presented
in the PSCAD/EMTDC master library is considered in this study. Voltage equations for
main stator windings, voltage equations for the short-circuited windings, and flux linkage
equations of the windings are represented in the dg0 reference frame. A more detailed
explanation about the generator in the PSCAD/EMTDC model can be found in [22, 23].

2.3. MMC System
2.3.1. Configuration and Operation of MMC
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Configuration of the Eree phase MMC system is depicted in Figure 6. The MMC in 168
this study is 7 (seven) levels modular converter. The MMC mts of three phase legs 169
(Leg A, Leg B, and Leg C). The legs have two similar arrjf8i.e., upper arm (p) and lower 170
arm (n). Each arm consists of six identical sub-modules m, an arm inductor (Law), and 171
an arm resistance (Rew) arranged in series. The arm inductors are used to limit circulating 172
arm current between three phase units and the valve short circuit current, and to contrib- 173
ute to interface between AC grid sy@®m and the MMC. The sub-module has two levels 174
half bridge configuration composed of two [EBTs with anti-parallel diodes and a capaci- 175
tor (Csm). Three phase ac terminal voltage is connected to each phase leg on the common 176
point connection between upper and lower arms through phase rea consisting of an 177
inductor (L) and a resistor (Ry). The reactor is used as a filter for AC voltage and current 178
[24]. 179

In the operation of the MMC, the DC link voltage (Va) charges the capacitor (Csm)in 180
the entire sub-module in which the sub-modules are switched into inserted state or by- 181
passed state. In the inserted state, the sub-module capacitor can be charging or discharg- 182
ing depending on voltage reference polarity. The switching state of sub-module condi- 183
tions is given in Table 1. Figures 7 shows the direction of sub-module arm current (low) 184
according to S1 and S2 switching state. The positive polarity of arm current direction is 185
indicated in the red color, and negative polarity of arm current direction is indicated in 186

the blue color. 187
Phase Leg Phase Arm DC Link Circuit

! t t R

| SM-pl | | SM-pl | | SM-pl |
| I
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arm R it .
| l Ibl = e l arm
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Le Br L PVEL,, | {"VEL
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;
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il g mlT T sl

? Lo
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B %
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I ¥ .
Leg C
. 188
189
(a) (b) (©) (d)
Figure 7. Current flow in sub-module according to switching state: (a) Bypass in positive polarity 190

(b) Charging in positive polarity (c) Bypass in negative polarity (d) Discharging in negative polar- 191
ity 192
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Table 1. Switching state of the Sub-Module conditions 193
witching State  Terminal Voltage Arm Current Status of
S1 S2 of SM (Vsu) Polarity Capacitor
OFF ON 0 + Bypass
ON OFF Vean + Charging
OFF ON 0 ] Bypass
ON OFF Vean - Discharging
194
2.3.2. Stator Side MMC Controller 195

Active pow d reactive power output of PMSG is controlled by the stator side 19
MMC gintroller. Three phase current and voltage of stator winding are transformed into 197
the dg-axis components by using Park Transformation, where the miti{m of rotor angle 198
(&) is obtained from the rotational speed of the G. Detail of control scheme of the 199
stator side MMC controller is shown in Figure 8. Active power and reactive power are 200
controlled independently by the g-axis current component and the d-axis current compo- 201
nent, respefgely. The PI controllers adjust power loop and inner current loop controllers 202
fo h of the d-axis and the g-axis components. The generator (PMSG) usually operates 203
in unity power factor operation in which the active power output (Ps) is set according to 204
power reference (Pry) tracking by MPPT circuit, and the reactive power output (Qs) is set 205
at zero. The outer power loop controller generates the dq-axis reference currents (Is@?). 206
The inner current loop controller generates the dg-axis reference voltages (Vs7). By using 207
the invers Park Transformation, the dqg-axis reference voltages are transferred into sinus- 208
oidal three phase reference voltages (+/-Vs@)) in which the minus (-) and plus (+) indicate 209
the reference signal for upper arm and lower arm, respectively. To increase tracking ca- 210
pability of the controllers, the cross-coupling cancellation (ar(Lsan/2+LsrtLs') is added at = 211
the output of inner loop of current controller. Ls#) denotes the dq-axis components of 212
leakage inductance of stator winding of the generator, Lsew and Lsr denote the arm induct- 213
ance and reactor inductance of Stator side MMC, respectively. 214

o (Z= 1 L+ 1) e

+v‘slsh('
e e e it H 215
Figure 8. Stator Side MMC Controller 216
2.3.3. Grigeide MMC Controller 217

The control scheme of the gg side MMC controller is shown in Figure 9. The control 218
loop is designed for controlling the DC link circuit voltage (Vi), and the reactive power 219
output of grid side MMC (Qy) in a similar way to the stator side MMC based on the dg 220
vector control. Three-phase currents (Ic*9)) and voltages (Vc) at ac terminal of the grid = 221
side MMC are transformed into the dg-axis form by using Park Transformation, where the 222
phase angle (&) and angular frequency (ex) are obtained from Phase Locked Loop (PLL) 223
controller. The PLL controller technique used in t@lsmdy is referred to the original 224
PSCAD/EMTDC's master library. The instantaneous active power (Pc) and reactive power 225
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(Qc) are calculated by using power meter, and the instantaneous rms voltage (Vc) of the
ac terminal is obtained from the three phase rms voltmeter. g

In the grid side MMC controller, the g-axis component (I#f) is used to control DC
link circuit voage at a constant DC voltage reference (V¥«), and the d-axis current com-
ponent (Ie?) is used to control reactive power output (Qgjor the ac terminal voltage (Vc)
of the grid side MMC. In normal mode operation, the Teactive power reference (Q'c) is
mally set at zero to maintain power factor at unity. In fault mode operation, the grid
voltage reference (V'c) is setat 1.0 pu. During fault conditions, the grid side MMC control-
ler will change its operation from normal mode to fault mode when the voltage at th
terminal output drops below 80%. The PI control loop systems are consisting of the
inner current loop control and the power loop control for eacw the d-axis and the g-axis
components. The cross coupling in the term of ex(Lann/2+Le)) 1s added to the output of the
inner loop current control for the controller tracking improvement, where Loaw and Lerare
arm inductance and reactor inductance of Grid side MMC, respectively.

Figure 9. Grid Side MMC Controller

The Lm of the development of the wind ine generator models in this paper is to
simulate and analyze the dynamic behaviors of grid co cted wind farm in steady state
and transient conditions. The grid connegfvity study 1:‘91 important requirement in the
development stage of wind farm project. In order to improve dynamic performance of the
control system of Stator Side MMC and Grid Side MMC, certainly the improvement meth-
ods such as energy-shaping L2-gain [25], sliding mode controller [26], pole and placement,
etc, can be applied to the proposed model. However, be se only concern in this study
is grid connectivity study, hence the control system that applied to the Stator Side MMC
and the Grid Side MMC can be standard control model by using PI controller. The gain
control parameters such as Kp and Ki are obtained by using pole and placement method
and optimum symmetrical criterion method for inner and outer controllers, respectively.

2.3.4. MMC Inner Control

As the MMC has three phase legs, a circulating current can exist within each phase
leg. In addition, two arm configurations in the MMC can generate two different voltage
levels for each sub-module in the same arm [27]. The circulation phase leg current should
be eliminated, and each sub-module capacitor voltage should be kept balanced at same
level. To handle these problems the MMC inner controller is inf#@uced. The MMC inner
controller depicted in Figure 10 is applied to both the stator side MMC and grid side
MMC. The purpose of MMC inner controller is to control circulation current in the
phase legs at zero, and o maintain each sub-module capacitor voltage at the same level.
Averagem:irculation current through a phase leg (lais) is obtained by adding the current
through upper arm (I;) and the current through lower arm (I.) divided by 2. The circulat-
ing current reference for each phase leg is set at zero. The [ controller adjusts to impose
the circulation voltage (Vuif) into the reference voltage for upper arm and the lower arm.
To control voltage balancing of each SM capacitor extra controllers are required. Detailed
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explanation farcn.rculaﬁng current controller and the SM capacitor voltage balancing con- 267

troller can be found in [2§]. 268
269
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Figure 10. MMC Inner Controller 271
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Figure 11. PS-PWM Technique 273
2.35. glase Shiftgg Pulse Width Modulation (PS-PWM) 274

In general, modulation techniques for multilevel converter can be summarized in 275
three categories: Multi Carrier Pulse Wave Modulation (MC-PWM), learest Level Mod- 276
ulation (NLM), and Space Vector Modulation (SVM) [29,30]. The E!lti—carrier Phase 277
Shifted Pulse Wave Modulation (PS-PWM) technique is considered in this study due to 278
its merits compared to other approaches. The PS-PWM technique is more effective and 279
more supf@gior in controlling the MMC, that is, the power distribution over entire sub- 280
modules can be provided, and the voltage nce at sub-module capacitors can be 281
achieved. Figure 11 shows the process of the P5S-PWM technique. Each sub-module has 282
an independent carrier signal in which the reference signal is distributed to all the series 283
sub-modules in each leg. The goal of the modulation is to produce PWM signal for switch- 284
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ing the IGBT gate on each sub-module. The number of e carrier signal applied is de- 285
pending mq}l'ne level of the MMC, and in this case, it is N-1, where N is the level of the 286
MMC. The phase shift (¢») between the carrier signals can be obtained through ¢» =360°/(N- 287
1) [31]. The frequency and amplitude of all carrier signals should be equal. As the SM 288
capacitor voltage balancing controller is applied to each SM, the PS-PWM with individual 289
capacitor voltage control technique [28] is considered. 290

2.4. DC link Circuit and Oygg Voltage Protection System 291

Figure 12 shows the link circuit model of back-to-back MMC converter. The cir- 292
cuit model consists of two dc link capacitors, a DC chopper, and an over voltage protec- 293
tion ¢ ller. The DC link circuit is a connection circuit which connects the stator side 294
MMC and the grid side MMC. The dc voltage orfhe DC link circuit should be kept at 295
constant at rated operating dc voltage so ?t the power flow from the generator to grid 296
system can be acﬂred smoothly. When a disturbance such as a short circuit occurs in the 297
grid system, the active power on the ac terminal of grid side MMC decreases, while the 298
active p from the generator is still produced. This condition leads to significant in- 299
crease of the DC link cir oltage due to power unbalance between the stator side MMC 300
and the grid side MMC. When the @ voltage is larger than 1.05 pu, the over voltage pro- 301
tection controller is activated, and then the active power from generator is absorlﬁi bya 302
chopper resistance (Ra). Value of the resistance can be adjusted according to the amount 303
of active power produced by the wind turbine generator which is represented by the ref- 304
erence power (Pry). 305

3. +
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Figure 12. DC link Circuit model 307
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Figure 13. Average model configuration of the wind turbine generator 309
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3. AveraaModel of MMC Controlled Wind Turbine Generator

The aim of the average model is to reduce the complexity and simulation time. Study
of grid-connected win s with many generators becomes inefficient if the simulation
is performed using the detailed model. In the average model, power electronic IGBTs of
MMC circuit and switching phenomenon are neglected, and hence the model me sim-
pler. Configuration of the average model of MMC controlled wind turbine generator is
shown in Figure 13. The main part of the model consists of wind turbine generator includ-
ing pitch controller system, stator side MMC with controller system, DC link circuit in-

ding over voltage protection, and grid side MMC with controller system. Wind turbine,
rive train, pitch contqller_, and generator models are same as those used in the detailed
model. Likewise, the stator side MMC controller and the grid side MMC controller are
same as the controllers used in the detailed model. Only the MMC circuits and the DC
link circuit are simplified. It should be noted that behavior of sub-module capacitor volt-
age is not considered in the average model. Therefore, the inner MMC controller can be
omitted.

3.1. MMC Circuit Model

To derive a model representation of the MMC, the equivalent approach model as
shown in Figure 14 is considered. By applying Kirchhoff Voltage Low (KVL) across the
phase reactor, differential equations for three phase circuit can be expressed as follows
[32, 33):

0+
Upper Arm
Ve
-l
be
1:(; 1 . viubc}
| T ol
‘!"!"! - )
| Laiff
Ve
Lower Arm 2
o =
Figure 14. Electrical circuit model of MMC
di}abc)
— g labc) o (abc) (abc) 8
Li—— =" v Ryiy (8)

By applying Park Transformation, the three-phase differential equation in the dg-axis
component can be expressed as follows:

dif
f d id iq
LJ'E— vg - v, = Rf:'f +G’J9LJ,’£}— (9)
dil
L _ 4 q pd cd
Lfﬁf Vg — V¢ — RILI — Wy Leiy (10)
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The complex grid power (S;) can be calculated as follows:

Sy &l+}'vg){tf —jif) = Sp = (wiif + v if) +j(vgif - vdif) (11)

From (11) the acfive power and reactive power can be written as

Py = vilif +vjif (12)
Qg =vgif — vgif (13)

In the same way, ac!ve power and reactive power flow to the converter valve can be writ-
ten as

PC=UCLJ,r+vJlr (14)

qpd _ pdid
Qy =v iy —vfi i (15)
%macﬁve power does not prop@ite to the DC side of the converter valve, the DC cur-
rent (iu) is obtained as regards to active power balance between AC side and DC side. By
assuming that the losses on the converter can be omitted, the following relation can be
written:

P. = Pyc = véif + v/ tf = Vaclac (16)

The voltages waveform %—le AC side of the MMC depends on the reference voltages
fed to each six arms. Inserf@®l voltages in the six arms of MMC are represented by con-
trolled voltage source. The upper and lower arm currents can be written as follows:

L(abc)
jlabe) _ j(abe) | o 17
IP mff + = 2 ( )
j(abe)
jlabe) _ j(aboy _ f (18)
n dif f 2

where s is circulating phase leg current which can be determined as average of upper
arm and lower arm currents as:

(abc) (abc)

(abc) + ""n (19)
Laiff 2

The voltage output at AC side of MMC is given by

(abc) (abc) (abc)
v(abc) — Uy - Uy _ Ram i(abc) am d"f (20)
¢ 2 2 7 2 dt

The% loop of each MMC arm can be expressed as

.(abc) b b
iy (abe) _ Vde (a R (21)
Larm =gy~ + Ramlaipy’ = == —
27
The 1nner difference voltage of each phase is given by
di (abc)
b d (ab
iipy = Larm dif + Rarmiigy =

The %emoe voltage of upper arm and lower arm for each phase can be written as fol-
lows:
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(abc) (abc)
plabey _Vae Vo T Un  (abe) (23)
pref — 2 dif f
abe abc
(abc) _ Ve v; ) — v?(l ) (abc) (24)
Vpref = t 5 ~ Vaiyy
2 2
3 E
g :
z =
= o
% =}
353
Figure 15. Simplified MMC circuit model 354

Referring to Figure 14, the proposed simplified MMC circuit n@el can be repre- 355
sented as depicted by Figure 15. The equivalent circuit for the MMC 1s rﬁesenfed by a 356
pair of three phase ac voltage sources and a pair of dc voltage sources for upper arm and 357
lower arm respectively. The ac voltage sources are connected to the MMC AC terminal 358
through the arm inductor (Lanw), arm resistan ami), Teactor inductor (Lf), and reactor 359
resistance (R)). The series dc voltage sources argnected to the DC terminal of the MMC. 360
Ehe —Vscla) and +Vs clal) are reference voltages for upper and lower arm respectively from 361
the MMC controller. +e Vi/2 is used as reference voltage for the dc voltage sources, 362

where #he Vi is voltage from the DC link circuit. 363
3.2, gC Link Circuit Model 364
Dynamic behavior of the capacitor voltage can be expressed by the following equa- 365
tion [32]: 366
dVy, 1
It —m(Ps‘Ps‘Pch) (25)
where Puxis power rbed by chopper resistance. 367

In steady state condition, the DC link circuit voltage should be kept constant at rated 368
voltage, and hence the wer produced by the generator can be flowed to the grid. When 369
a transient disturbance stich as a short circuit occurs in the g—rieystem, the DClink circuit 370
voltage can exceed its rated voltage significantly because of unbalance of output power 371
between the PMSG (Ps) and the grid side MMC (Pc). This phenomenon is important to 372
consider in the grid connectivity study of wind farms. Therefore, the over @§ltage protec- 373
tion scheme is also included in the model. Configuration of the proposed circuit 374
model is shown in Figure 16. Power absorption by the chopper resistance 1s activated 375
when the DC link voltage exceeds 1.05 pu. 376
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1if ¥y, > 1.05 pu
DifVy = 1L.05pn

Comparator [€— 105 pu

Figure 16. DC link circuit model

4, Simulation and Analysis

Figure 17 depicts the power system considered in the simulation study. A 50 MW
wind farm ia'(msisting of five 10 MW PMSG based wind turbines controlled by MMC
system. The wind turbine generators (WTGs) are connected to each other by medium volt-
age collector power cables. Each collector power cable is represented by equivalent m cir-
cuit model. Power outputs from the wind ine generators are collected at 33 kV main
bus (B33), and then supplied to main grid through a 33kV/66kV main transformer and

double circuit sf 66 kV transmission line. Parameters of the PMSG and the MMC are pre-
sented in Tables 2 and 3, respectively.
wTG1 -
j10pu
AR
Wyl VA Wind farm power cable collector Farnmumr per km
L Type cable model : m
1 km R1 (0} RO () Li{mH) | Lo(mH) | C1(wF) | €O (wF)
WTG2 _ 01153 0.413 1.06 33 0.1133 0.005
PO
oMW 10 MVA
10KVI3IKV

0.0085 pu j0.011 pu

Tj0024pu T J0.024pu

10 MVA

0.0085 pu j0.011pu
10KVIIIRY ]

Toozapy ¥ 0.024pu

PSS I I | —

1km
wre “;1.0 ILG & 2LG
oMW 10 MVA
10KVI32KY
1km Power System Frequency 50 Hz
WTG5 . 100 MVA Base
J1.0 pu
0 10KVIBRY
Figure 1?.chr system model
Table 2. Parameters of PMSG
Parameter Value Parameter Value
Rated MVA 10 MVA aor Winding Resistance 0.017 pu
Rated Voltage (L-L) 10 kV or Leakage Reactance 0.0364
Rated Frequency 50 Hz d-axis Unsaturated Reactance [Xd] 0.55 pu

Magnetic Strength 1.1 pu g-axis Unsaturated Reactance [Xy] 1.11 pu
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387
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Table 3. Parameters of MMC 391
@meler Value Parameter Value
ed Power 10 MV A SM Capacitor 9.2 mF
Rated AC Voltage 10 kv Arm Inductance 3.8 mH
Rated DC Voltage 18 kV Arm Resistance 0.097 &
Number SMs per arm 6 Reactor Inductance 0.773 mH
Carrier Frequency 1000 Hz Reactor Resistance 0.019Q
DC link Capacitor 7.4 mF
392

The power system model shown in Figure 17 has been analyzed with the detailed 393
and the av@Bage models by using simssdation PSCAD/EMTDC. Accuracy of the average 394
model hasgin validated by comparing its responses under both nady state and transi- 395
ent conditions with those obtained from the detailed model. The simulations have been 396
performed on the personal computer (Intel (R) Core (TM) i7-9700 CPU @ 3.0 GHz Ram 64 397
GB. 398

4.1. Steady State Performance Analysis

In steady state study, natural wind velocity gata measured in Hokkaido Island, Ja- 400
pan, are randarmselected for the simulation. The wind speed data of 300 seconds are 401
applied to each wind turbine generator, and they are shown in Figure 18. In this paper, 402
dynamic performances of all wind turbine generators are not shown, but only the dy- 403
namic performances of WTGI are presented as a representative for all WTGs. The dy- 404
namic performances gWT G 1, such as rotor speed response, the voltage profile at termi- 405
n stator winding, active and reactive power output of the PMSG, the dcvoltage profile 406
at DC link circuit, active and reactive power output of grid side MMC, and voltage profile 407
at low voltage side of the sgip-up transformer (Bus BG1), are presented in Figure 19. Total 408
active power and reactive power output of the wind farm and voltage profile at Bus B33 409
are presented in Figure 20. In can be confirmed that, the dynamic performances of the 410
WTG under steady state condition can be clearly analyzed in the detailed model and the 411
average model representation, and good d)nmic control performances can clearly be 412
seen. It is clear that the average model has sufficient accuracy in steady state analysis. 413
Moreover, the computation time of the average model is much shorter than that of the 414

399

detailed model as presented in Table 4. 415
Table 4. Computation time of each model for 300 sec steady state analysis 416
. . Computation Time
Simulation
Detailed Model Average Model
E:‘le step 10 psec 100 psec
ration 840 hours 11 minutes
417

Wind Speed (m/s)

Time (sec)

418
Figure 18. Wind velocity data 419
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Figure 20. Power output and voltage performances of the wind farm under steady state condition: (a) g}tal active power 423
and reactive power outputs of the wind farm; (b) Voltage profile at Bus B33. 424

4.2, Transient Performance Analysis 425

For transient performance study, a short circuit of three ges to fRund fault (3LG) 426

and two lines to ground fault (2LG) on one of the circuits of the 66-kV transmission lineis 427
consi d as disturbance. The location of the faults is shown in Figure 17. The faults oc- 428
cur at U1, and then the circuit breakers (CBs) on the faulted line are opened at 0.2 sec to 429
isolate the fault from the system. The CBs are reclosed at 1.0 sec on the assumption that 430
fault has been cleared. During the simulation time of 5 sec, the wind velocities of WTGs 431
are assumed to be constant at rated velocity of 12 m/sec. 432
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Figure 22. Dynamic Performan f WTG1in case of 2LG: (a) Rotor speed response; (b) Voltage profiles at termi-
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Figure 24. Power output and voltage performances of the wind farm at Bus B33 under 2LG Case: (a) Active power output of
wind farm; (b) Voltage profile at Bus B33.

As Ee wind speed applied to each wind turbine generator is same, the dynamic per-
formances of each individual WTG in the transient conditions for 3LG and 2LG are repre-
sented by the dfffmic performances of only WTGI as presented in Figures 21 and 22,
respectively. As the wind turbine generator is totally decoupled from the grid network by
back-to-back MMC, the short circuit on the grid network does not affect dynamic perfor-
mances on the generator side in cases of 3LG and 2LG. The transient disturbances have
almost no influence on the dynamic performances of the generator such as rotor speed
response, power outputs and voltage profile. However, the transient disturbances affect
e performances of the DC link circuit voltage, power output of Grid side MMC, current
and voltage profiles at Bus BG1. In DC link circuit, the transient dc voltage appears due
to t LG and 2LG faults, but it can be controlled by the over voltage protection system,
and hence the dc voltage can be returned to the initial condition after the fault is cleared.
It is also confirmed that the power output of Grid side MMC pesfermanee and voltage
profile at B@s BG1 can be returned to the initial conditions after the fault. The perfor-
mances of&al power output of the wind farm and voltage profile at Bus 33 for 3LG and
2LG cases are shown in Figures 22 and 24, respectively.

From the simulation results, it can be confirmed that the dynamic performances of
the detailed model and the average model have almost the same responses also in the
transient conditio The different responses between the detailed and average models
appear slightly in the DC link circuit voltage profile and the power output eharactesistie
of Grid side MMC. However, they are slight and disappear after returning to the steady-
state condition after fault clearance.

4.3. Disciggion

The aim of the development of the wind turbine generator models in thiggpaper is to
simulate and analyze the dynamic behaviors of grid connected wind farm ingady state
and transient conditions. To verify the accuracy of the proposed mod@h, the simulation
results should be validated by real field data. However, the real field data is not easy to
access. In addition, the implementation of the MMC controlled PMSG based wind turbine
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is a new topology concept of wind turbine generator that has not been realized practically 470
yet. Therefore, the detailed model is presented in this study because its dynamic behavior 471
is close to real field conditions. To get real system situation, the wind farm model as shown 472
in Figure 17 is adopted and simulated as the proposed detailed model. As a consequence, 473
the fmlati(m duratien took very long computation time. 474
1s very important to understand that the proposed average model is an approach 475
method to approximate the detailed model by reducing complexity of MMC circuit, where 476
some parts such as the switching phenomena, power electronic IGBTs of the submodules 477
are neglected in the simulation. In the steady state analysis, the-perfermances—of both 478
models have almost same responses. In a case of the transien dition with a short cir- 479
cuit fault, there are slight differences in the simulation results in'the DC vnltamesp(mse 480
and the active and reactive power response overshoot between the detailed model and 481
the average model after the CB is opened. 482
Asreal wind farm can consist of hundreds of wind turbine generators, the simulation 483
study cannot be performed by the detailed model. To solve this problem the average 484
model is presented in this paper. The average model can be used as individual or aggre- 485
gated wind turbine generator models in simulation analyses. 486

5. Conclusions 487

Dynamic performances anabysis of the proposed detailed and the proposed average 488
models of grid connected MMC controlled permanent magnet wind turbine generator 489
hav@been investigated. Comparative analyses between the detailed and the average mod- 490
els have been performed for steady state and transient conditions and it has been con- 491
firmed that both models have almost the same d ynamic responses and have a good con- 492
trollability. Although both models can be used in the analysis of grid connected wind 493
farms, each model can have different purposes in applications. 494

The proposed detailed model is required a small discrete time step because power 495
electronics IGBTs and their switching phenomena are considered. The detailed model is 496
suited for analyzing the dynamic performance in control system design of an individual 497
wind turbine generator in a short time simulation. The dynamic performance of MMC's 498
sub-modules and harmonics analyses can be handled by the detailed model. 499

In the proposed average model, power electronics IGBTs converter and switching 500
phenomena are omitted, arfl§thus the simulation time step can be much larger than that 501

of the detailed model. The can be used as individual or aggregated model of the 502
wind turbif@@ generators and wind farm. The model is suited to analyze a power system 503
with many wind generators which cannot be analyzed by using the detailed model. 504

In the near future, the developm f control strategies to improve dynamic perfor- 505

mance of the MMC in controlling the power flow from the generator to the grid system 506
would be performed. Improvement of gain control by adopting linear or nonlinear meth- 507
ods would be one of the key point in the next research. Optimization methods based on 508

Artificial Intelligence (Al) will also be considered in the future research. 509
Appendix 510
In this paper, it should be noted thata 3-phase abc to dq0 transformation as well asits 511
inverse are used, and they are expressed by the following equations [16]: 512
Park Transformation 513
60
cos(#) cos (ﬂ —2—;) cos (ﬂ +2?H)
a 49 in 2m |[¢
= i - i — b
Ig] Sron@) sin (EJ B ) sin (9 + 3) L] (26)
1 1 1
2 2 2

Invers Park Transformation 514
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