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Abstract. The assessment and comparison of income inequality and poverty can be supported 

by estimating probability distribution of income. Income distributions which are typically 

heavy tailed and positively skewed have been estimated both parametric and nonparametric 

approach. In parametric approach, finite mixtures distributions have been usefully 

implemented in the modelling of income distributions which has multimodal characteristic. 

The Markov Chain Monte Carlo (MCMC) approach is one of estimation methods which has a 

good performance in estimating parameter of Bayesian finite mixture model. The convergence 

of the MCMC sampler to the posterior distribution is typically assessed using standard 

diagnostics methods,.i.e., Gelman-Rubin method, Geweke method, Raftery-Lewis method and 

Heidelberger-Welch method. Those methods can give different results to conclude MCMC 

convergence condition. In this paper, a real sample income data from the Indonesian Family 

Life Survey (IFLS) 2015 and BidikMisi 2015 are employed to demonstrate the performance of 

diagnostics tools that assess convergence of the MCMC algorithm in estimating parameter of 

Bayesian finite mixture models. 

1.  Introduction 

Statistical modelling based on finite mixture distributions that also known as finite mixture modelling 

is an interesting research field with the considerable range of applications. Finite mixture model 

captures many specific properties of real data such as multimodality, skewness, kurtosis, and 

unobserved heterogeneity [1]. It means that mixture distribution can represent as data pattern in data-

driven analysis perspective [2]. Presently, finite mixture models are implemented in such varied areas 

as biometrics, genetics, medicine, financ  e and economics including income distribution modelling.  

In parametric approach, there are many probability distributions alternatives which can be used to 

estimate the income distribution model in such population. This approach is implemented as part of 

the analyzing process of the income distribution in a region related to the economic and poverty 

imbalances which occur in that population. The mixture distribution is relatively flexible for 
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approaching the distribution of income with different sub-populations. Each sub-populations may 

reflect groups with economic homogeneity [3]. Finite mixture models provide a flexible extension of 

classical statistical models, though the inference for these models poses particular challenge on 

computational aspects [1].  

Bayesian inference approach can overcome that computational problem, since it allows the 

complicated structure of a mixture model to be decomposed into a set of simpler structures [4]. 

However, their analytical parameter of posterior distribution which can contain large integral 

dimension equation is usually difficult to be found. Thus a simulation method called Markov Chain 

Monte Carlo (MCMC) is suggested to solve numerically this problem. MCMC approach involves the 

simulation process which is performed iteratively Markov chains using Monte Carlo method to obtain 

convergence condition on posterior distribution. Implementation of MCMC in Bayesian analysis 

requires a proper sampling algorithm to obtain a sample of a distribution. Gibbs sampler is one of 

algorithms that is frequently used as generator of random variables in MCMC [5]. 

Although MCMC algorithms allow an advantageous computation, it can also encounter a 

conceivably serious weakness that relates with convergence of parameter estimation process. 

Therefore, in Bayesian finite mixture modelling, it should use standard diagnostics tools that verify the 

convergence of estimated parameter in order to reach the target posterior inference for parameters. The 

assessment methods of convergence such as Gelman-Rubin method [6], Geweke method [7], Raftery-

Lewis method [8] and Heidelberger-Welch method [9] can produce diverse results about the 

achievement of MCMC convergence condition. 

2.  Bayesian Finite Mixture Model 

We explain finite mixture model in section 2.1 and Bayesian approach for finite mixture model is 

described in section 2.2.  

2.1.  Finite Mixture Model 

A random variable vector y which has discrete or continuous type is said to be derived from a finite 

mixture distribution, if the probability density function g(y) has a mixture density form that applies to 

all y , 

 1 1( ) ( ) ... ( )K Kg w f w f  y y y  (1) 

where ( )kf y  is probability density function for 1,2,  ,k K  . ( )kf y is distribution function of k-th 

mixture component and K is the number of mixture components. 1,... , Kw w  are weighting parameters 

and  vector  '

1( ,... , )Kw ww  is weighting vector of mixture distribution. The value of  w  must fulfil 

0  1kw   and 1 ... 1Kw w   .  

In some cases of application, if it is assumed that all components of the finite mixture distribution 

come from a probability distribution having parametersθ , then equation (1) can be redefined as  

1( | , ) ( | ) ... ( | )Kg w f w f  1 Ky w θ y θ y θ                          (2) 

with '( ,... , ) 1 Kθ θ θ  [1]. Statistical model that implements the concept of finite mixture distribution in 

the modeling is usually called the finite mixture model. 

2.2.  Bayesian Approach 

Let  1 2, ,  ..., Ny y y y  are uncategorized observations from the mixture distribution that are randomly 

selected. Let 
' '

1 2( , ,  ..., ) ( ,... , , )d     1 KΘ θ θ w  denote all unknown parameters appearing in the 

mixture model. By using Bayes theorem, the posterior probability distribution  | Θ y  is proportional 

to the multiplication between the prior distribution of Θ , ( )p Θ , and the mixture likelihood,  |Lf y Θ . 

It can be represented mathematically as follows,  
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and the mixture likelihood function  |Lf y Θ  takes the form, 

      
11 1

| | |
N N K

L i k i k

ki i

f g w f
 

 
   

 
 y Θ y Θ y θ  . (4) 

After determining prior distribution, the Bayesian approach will perform parameter estimation by 

integrating the posterior distribution. The integration process is approached by simulation procedure 

which is commonly known as MCMC method. When Bayesian approach is implemented on finite 

mixture modelling, parameter estimation result does not rely on asymptotic normality, and yields valid 

inference in cases where regularity conditions are violated, such as small data sets and mixtures with 

small component weights [10].  

2.2.1.  Gibbs Sampler. Advantage of the Gibbs sampler is that, in each step, random values only 

consider to be generated from univariate conditional distributions. Based on [5], the algorithm can be 

summarized by the following steps: 

1. Set initial values (0)Θ  . 

2. For 1,2,...,t T  repeat the following steps : 

(i)   ( 1)tΘ Θ   

(ii)  for 1,2,...,j d  update j  from \( | , )~j j j  Θ y  

 \( | , )j j  Θ y  is full conditional posterior distribution with 
'

\ 1 1 1( ,... , , ,... , )j j j d     Θ  . 

(iii) ( )t Θ Θ   and save  it as  the generated set of values at  t + 1 iterations of the algorithm. 

 

Therefore, by giving the chain ( )tΘ , algorithm generates the new parameter values as follows 

 
( )

1

t  from ( 1) ( 1) ( 1)

1 2 3( | , ,... , , )t t t

d       y  
( )

2

t  from ( ) ( 1) ( 1)

2 1 3( | , ,... , , )t t t

d      y  

                                               
( )t

j  from 
( ) ( ) ( ) ( 1) ( 1)

1 2 1 1( | , ,... , , ,... , , )t t t t t

j j j d  

       y   

                                               

 ( )t

d from ( ) ( ) ( )

1 2 1( | , ,... , , )t t t

d d     y   

 

The generating process, \( | , )j j  Θ y =
( ) ( ) ( ) ( 1) ( 1)

1 2 1 1( | , ,... , , ,... , , )t t t t t

j j j d  

       y , is quite 

simple and it has proportional relation as \( | , )  ( | )j j  Θ y Θ y , where all the variables except j  

have constant values. 

 

3.  Markov Chain Monte Carlo Convergence Diagnostics 

3.1.  Gelman-Rubin 
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The Gelman-Rubin method approach is done by defining several Markov Chains with different initial 

values and comparing the variance between some Markov Chains with the variance in each Markov 

Chain. If there is m Markov Chains which are mutually independent and if each markov chain has 

been taken a number of T iterations, 1,  2, ..., t T , then MCMC convergence can be monitored 

through estimation of potential scale reduction factor (PSRF) formulated as follows 

 
ˆ( )ˆ V

R
avg


   (5) 

where 
1 1ˆ( )

T
V avg B

T T


    is the variance estimate of  , 2

1

1 m

i

i

avg s
m 

  with   
2

2

1

1

1
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i it i
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2
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m

i

i

T
B

m 

  

  with 

1

1 m

i

im 

   . If the PSRF value is close to 1, then every m Markov 

Chains converge to the target distribution. Conversely, if the value of PSRF is large, it is necessary to 

take an extended stage of simulation that allows to reduce the value of ˆ( )V   or to increase the value 

of avg such that m Markov Chains converge to target distribution [11]. The Gelman-Rubin method for 

one parameter is further developed by Brooks and Gelman for vector of Θ and also known as the 

Brooks-Gelman-Rubin (BGR) method [12].   

3.2.  Geweke 

Suppose that 
1  is a parameter of interest and 

(1) ( )

1 1,  , T   are related simulated values with 

subsamples A and B as the beginning and the end respectively. The diagnostic test computes 

( )B A

B A

Z


 

 
       (6) 

where A  and B  are means of subsamples and 
( )B A
 

 is an estimated standard deviation of 

difference B A  . Considering Z asymptotically follows the standardized normal distribution,

~ (0,1)Z N , if 2Z   then the chain is not convergent [5]. 

3.3.  Raftery-Lewis 

Suppose 
minN as the minimum number of iterations that is needed to achieve the required estimation 

precision for some function of parameter  and the quantile of interest is q and s, then
minN is given by 

2

1

min 2

1 (1 )

2

s q q
N F

r

   
   

  
     (7) 

where F(·) is the standard normal cumulative distribution function. The value of dependence factors, 

min/I N N  , can be used to indicate convergence condition of the chain. If the value is greater than 5, 

then it implies a convergence failure. 

3.4.  Heidelberger-Welch 

The Heidelberger and Welch method which is applied for the analysis of single chains from 

univariate observations is developed based on Brownian bridge theory [9]. Suppose ( )j is the j-th 

iterate in the chain, (0)f  is the spectral density of the chain evaluated at zero and [nt] is the greatest 

integer less than or equal to nt. Let  

 

[ ]

1/2

[ ] 
( ) ,     0 1

 (0)

nt

n

S nt
B t t

n f

 
        (8) 
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where 
0 0S   , ( )

1
     1

k j

k j
S k


    ,  ( ) 1

1
 

n j

j
n


   , then  ( ),  0 1n nB B t t    converges in 

distribution to the Brownian bridge as n . 

 

4.  Application 

 

In this section, real sample income data which determines from the Indonesian Family Life Survey 

(IFLS) 2015 and BidikMisi 2015 are employed to demonstrate the performance of diagnostics tools 

that assess convergence of the MCMC algorithm in finite mixture models. Computation of MCMC 

convergence with those diagnostic methods has been integrated in BUGS software : WinBUGS [13] or 

OpenBUGS [14]. Whereas computing through R software is done with Convergence Diagnostic and 

Output Analysis (CODA) package [15]. 

 

4.1.  Indonesian Family Life Survey (IFLS) 2015. 

Source of household income response data is processed based on survey data from Indonesian Family 

Life Survey (IFLS) 2015 which examines the life of household in Indonesia [16]. In this paper, we use 

household income data in Province of Daerah Istimewa Yogyakarta (DIY) with a sample of 690 

households in five districts / cities: Kulonprogo Regency, Bantul Regency, Gunungkidul Regency, 

Sleman Regency and Yogyakarta City. The histogram kernel plot of the distribution is shown in 

Figure 1 below 

 

Figure 1 Kernel Histogram Plot Distribution of Household Income Data in 

Province of DIY. 
 

Based on figure 1, it can be shown that income distribution indicates a multimodal characteristic 

that can be approached by finite mixture distribution. Using Mathematica 11 software, we preliminary 

presume that income distribution can be modelled by mixture model with three components of the two 

parameter Gamma distribution, ( , )Gamma   ,which can be called as three components Gamma 

mixture, 

 
3

1

( | , ) ( | )k k

k

g w f


y w θ y θ   

where  
1 1  

( | ) ( | , ) ( )k k k y

k k k k kf f y e
     

  
  y θ y   is two parameter Gamma distribution. 

In that model, there are three parameters , ,w   which have to be estimated. Based on [17], the 

prior distributions which are implemented for each of parameters are  
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( ) ( )

( ) ( )

( ) ( , )

k

k k k

p Dirichlet

p Exp

p InverseGamma



 

  







w

 

 

In our research, we focus on estimation convergence of weighting parameters 1 2 3, ,w w w . In the first 

process, we generated 8,000 iterations which produced indicator values of CODA diagnostic that 

indicated some convergent problems. It was necessary to take an extended stage of iterations as stated 

on [11]. Therefore we performed further simulations,i.e.,100,000 iterations so that the effect of raised 

number iterations could be verified on MCMC convergence. The results of CODA diagnostic are 

described on table 1 with case 1 for 8,000 iterations and case 2 for 100,000 iterations. 
 

Table 1.  Indicator values of CODA diagnostics for weighting parameters
1 2 3, ,w w w  . 

Diagnostics w1 w2 w3 

case 1 case 2 case 1 case 2 case 1 case 2 

BGR 5.74 1.01 3.05 1.01     1.43 1.04 

Geweke -4.555 -1.260 5.653 1.56      0.116 -0.249 

Raftery-Lewis   41.20 60.3 9.37 17.8      22.20 50.8 

Heidelberger-

Welch 

   failed    failed failed  failed      passed  passed 

 

Referring to table 1, for BGR and Geweke methods, the increasing number of iterations can 

improve the convergence of MCMC. However, it does not occur for Raftery-Lewis and Heidelberger-

Welch methods. In all cases and all parameters, Raftery-Lewis method gives unconvergent indicator 

values. If we regard from three diagnostics methods: BGR, Geweke and Heidelberger-Welch, it seems 

that only estimation parameter of w3 which tends to converge. This problem is caused by a 

computation process that is trapped on one of the mixture components and the process cannot get out 

from that mixture component. Historical simulations with two different chains on figure 1 present that 

estimation process of 
3w  tends a convergent condition which does not be achieved by estimation 

processes of
1 2,w w . 

 
(a) 

1w   

 
(b) 

2w   
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(c)

3w   

Figure 1. Historical simulation of 
1 2 3, ,w w w   on 100,000 iterations. 

 

Those convergence problems can happen, because there is not restriction condition on mean of 

each component Gamma mixture, i.e., 
1 2 3    , which can assure identifiability of component 

mixture. So re-parameterization of Gamma mixture model that implements restriction condition is 

done through BUGS program which is given on Appendix. The results of CODA diagnostics after re-

parameterization are shown on table 2. 

 

Table 2.  Indicator values of CODA diagnostics for weighting parameters
1 2 3, ,w w w   

Diagnostics w1 w2 w3 

case 1 case 2 case 1 case 2 case 1 case 2 

BGR 1.02 1.00 1.00 1.01 1.02 1.00 

Geweke -0.9699 -0.7212 -0.5645 -0.5383     0.7292 0.2442 

Raftery-Lewis 98.4 63 7.78 17 18.7 35.7 

Heidelberger-

Welch 

  passed    passed passed passed    passed  passed 

 

Table 2 shows that indicator values for BGR, Geweke and Heidelberger-Welch methods indicate 

the Markov chain reaches convergence condition for both cases. However, the convergence conditions 

are not fulfilled by the Raftery-Lewis method. 

Other possibly solution to avoid a trapped estimation process on one of the mixture components is 

to reduce the number of mixture components [10]. So, we simplified the mixture model from three 

component mixtures to two component mixtures. The CODA results for two component Gamma 

mixture are exposed on table 3. 

 

Table 3. Indicator values of CODA for two components Gamma mixtures. 

Diagnostics w1 w2 

case 1 case 2 case 1 case 2 

BGR 1.03 1 1.03 1 

Geweke 0.764 1.115 -0.764 -1.115 

Raftery-Lewis 16.8 26.5 9.78 18.5 

Heidelberger-

Welch 

passed passed passed passed 
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In regarding to table 3, it can be seen that BGR, Geweke and Heidelberger-Welch methods give 

similar conclusion about convergence parameters achieved. Nevertheless, Raftery-Lewis method still 

gives an opposite convergence result. For this reason, it has to be required further exploration which 

concerns about implementation of Raftery-Lewis on finite mixture models. 

4.2.  BidikMisi 2015 

Source of income response data is processed based on survey data from BidikMisi in 2015. In this 

paper, we used income data in Province of Daerah Istimewa Yogyakarta (DIY) with a sample of 1,149 

households. In this paper the income distribution is modelled by mixture model with three components 

of Normal distribution 
2( , )N   ,  

3

1

( | , ) ( | )k k

k

g w f


y w θ y θ  

where  
2

2

( )
 1/2

2 2 2( | ) ( | , ) 2

x

k k kf f e



  




 y θ y  is Normal distribution. The prior distribution for 

weighting parameter is ( ) ( )p Dirichlet w .  Similar simulations as IFLS data are conducted for 

assessment process of  MCMC convergence. The results of CODA diagnostic are presented on table 4. 

 

Table 4.  Indicator values of CODA diagnostics for weighting parameters
1 2 3, ,w w w  of  Normal 

mixture.  

Diagnostics w1 w2 w3 

case 1 case 2 case 1 case 2 case 1 case 2 

BGR 1.04 1 1.01 1 1.07 1 

Geweke -0.8569 -0.6666 -0.8146 0.4141     1.0277 0.0883 

Raftery-Lewis 12.00 23.3 7.93 12.0 55.5 99.0 

Heidelberger-

Welch 

   failed passed  failed passed    passed passed 

 

Indicator values which are shown on table 4 give an affirmation that the increasing number of 

iterations can provide better indicator values of MCMC convergence. Even though, that condition only 

happen on BGR, Geweke and Heidelberger-Welch methods, while indicator value of convergence 

base on Raftery-Lewis method has not changed. 

Historical simulations with two different chains on figure 2 describe that estimation process of 

1 2 3, ,w w w  tends a convergent condition. 

 

 
(a)

1w  
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(b) 

2w  

 
(c)

3w   

Figure 2. Historical simulation of 
1 2 3, ,w w w   on 100,000 iterations for 

Normal mixture model. 

 

5.  Conclusion 

The increasing number of iterations can provide a better indicator value of MCMC convergence on 

diagnostics tools such as Gelman-Rubin method, Geweke method and Heidelberger-Welch method. 

Nonetheless indicator value of Raftery-Lewis method is not affected by the increment of iteration. 

Therefore, further researches that concern on Raftery-Lewis method for assessment convergence of 

Bayesian finite mixture modelling are required. 
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Appendix 

 

model{ 

  for( i in 1 : N ) { 

   y[i] ~ dgamma(alpha, beta[i]) 

   beta[i] <- alpha/mu[T[i]] 

   T[i] ~ dcat(w[]) 

  }  

  w[1:3] ~ ddirich(alp[]) 

  theta ~ dunif(0.0, 10000000) 

  theta2 ~ dunif(0.0,10000000) 

  mu[3] <- mu[2] + theta2 

  mu[2] <- mu[1] + theta 

  mu[1] <- 1/lamb 
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  lamb ~ dgamma(1.5, 1) 

  alpha ~ dexp(1)  

 } 
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