Analisis Postur Pekerja dengan Penerapan Metode RULA Berbasis Computer Vision dan Deep Learning di PT. Kalpataru Metta Sejahtera

Ardiansyah, Muhammad Alfiar Pradita Hasibuan (2026) Analisis Postur Pekerja dengan Penerapan Metode RULA Berbasis Computer Vision dan Deep Learning di PT. Kalpataru Metta Sejahtera. Undergraduate thesis, Universitas Muhammadiyah Surabaya.

[thumbnail of Pendahuluan]
Preview
Text (Pendahuluan)
Pendahuluan_Muhammad Alfiar Pradita H.A._20201336008.pdf

Download (1MB) | Preview
[thumbnail of Bab 1]
Preview
Text (Bab 1)
Bab 1_Muhammad Alfiar Pradita H.A._20201336008.pdf

Download (143kB) | Preview
[thumbnail of Bab 2]
Preview
Text (Bab 2)
Bab 2_Muhammad Alfiar Pradita H.A._20201336008.pdf

Download (1MB) | Preview
[thumbnail of Bab 3]
Preview
Text (Bab 3)
Bab 3_Muhammad Alfiar Pradita H.A._20201336008.pdf

Download (626kB) | Preview
[thumbnail of Bab 4] Text (Bab 4)
Bab 4_Muhammad Alfiar Pradita H.A._20201336008.pdf
Restricted to Repository staff only

Download (1MB)
[thumbnail of Bab 5] Text (Bab 5)
Bab 5_Muhammad Alfiar Pradita H.A._20201336008.pdf
Restricted to Repository staff only

Download (27kB)
[thumbnail of Daftar Pustaka]
Preview
Text (Daftar Pustaka)
Daftar Pustaka_Muhammad Alfiar Pradita H.A._20201336008.pdf

Download (144kB) | Preview
[thumbnail of Lampiran] Text (Lampiran)
Lampiran_Muhammad Alfiar Pradita H.A._20201336008.pdf
Restricted to Repository staff only

Download (865kB)

Abstract

Dosen Pembimbing 1 : Yessie Ardina Kusuma, S.T.,M.T Dosen Pembimbing 2 : Ridho Akbar, S.ST.,M.T
Salah satu aspek krusial yang perlu diperhatikan dalam kaitannya dengan performa kerja manusia adalah faktor ergonomi, khususnya postur kerja saat melakukan tugas tertentu. Penyesuaian antara tugas pekerjaan dengan kemampuan serta kenyamanan fisik pekerja menjadi penting untuk meminimalkan risiko kelelahan dan cedera akibat kerja. Penelitian ini bertujuan untuk mengidentifikasi keluhan pekerja menggunakan kuesioner Nordic Body Map (NBM) dan menganalisis postur pekerja bagian produksi di PT. Kalpataru Metta Sejahtera menggunakan metode Rapid Upper Limb Assessment (RULA) berbasis Computer Vision dan deep learning untuk mengidentifikasi potensi risiko Musculoskeletal Disorders (MSDs). Hasil penelitian menunjukkan keluhan pekerja pada area tubuh atas meliputi keluhan pada punggung, pinggang, bahu kiri , leher bagian atas, bokong, bahu kanan, pantat, lengan atas kiri, lengan atas kanan, dan siku kanan dengan skor NBM sebagai berikut 40, 40, 35, 32, 32,
30, 30, 27, 27, dan 27. Analisis postur kerja menggunakan metode RULA berbasis Computer Vision dan Deep Learning menunjukkan kegiatan produksi dengan skor RULA tinggi antara lain aktivitas pemotongan sebesar 7, aktivitas drilling sebesar 7, perakitan sebesar 7, pengecekan sebesar 6, dan packaging sebesar 5. Skor tersebut menunjukkan perlunya intervensi ergonomi untuk mengurangi risiko cedera. Penelitian ini merekomendasikan perbaikan postur kerja, pelatihan ergonomi, dan optimalisasi fasilitas kerja guna mengurangi risiko MSDs. Implementasi metode berbasis teknologi ini diharapkan dapat menjadi solusi efektif dalam evaluasi dan perbaikan ergonomi kerja secara otomatis dan berkelanjutan.

================================================================================

One crucial aspect that needs to be considered in relation to human work performance is ergonomics, particularly work posture when performing certain tasks. Adjusting work tasks to match the worker's abilities and physical comfort is important to minimize the risk of fatigue and work-related injuries. This study aims to identify worker complaints using the Nordic Body Map (NBM) questionnaire and analyze the posture of production workers at PT. Kalpataru Metta Sejahtera using the Rapid Upper Limb Assessment (RULA) method based on Computer Vision and deep learning to identify potential risks of Musculoskeletal Disorders (MSDs). The study results show worker complaints in the upper body area, including complaints in the back, waist, left shoulder, upper neck, buttocks, right shoulder, hips, left upper arm, right upper arm, and right elbow, with NBM scores of 40, 40, 35, 32, 32, 30, 30, 27, 27, and 27, Work posture analysis using the RULA method based on Computer Vision and Deep Leaming shows production activities with high RULA scores, including cutting at 7, drilling at 7, assembly at 7, inspection at 6, and packaging at 5. These scores indicate the need for ergonomic interventions to reduce the risk of injury. This study recommends improving work posture, providing ergonomic training, and optimizing work facilities to reduce the risk of MSDs. The implementation of this technology-based method is expected to be an effective solution for the automatic and continuous evaluation and improvement of workplace ergonomics.

Item Type: Thesis (Undergraduate)
Uncontrolled Keywords: Ergonomi, Musculoskeletal Disorders (MSDs), Nordic Body Map (NBM), Rapid Upper Limb Assessment (RULA), Computer Vision, Deep Learning.
Subjects: H Social Sciences > HD Industries. Land use. Labor
T Technology > T Technology (General)
T Technology > TS Manufactures
Divisions: 08. Fakultas Teknik > Teknik Industri
Depositing User: muhammad alfiar pradita hasibuan ardiansyah
Date Deposited: 19 Jan 2026 01:50
Last Modified: 19 Jan 2026 02:19
URI: https://repository.um-surabaya.ac.id/id/eprint/10879

Actions (login required)

View Item
View Item